
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Laboratory of Software Technology

Henri Sivonen

An HTML5 Conformance Checker
(DRAFT)

Master’s Thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Technology.

Helsinki, 2007-03-XXX

Supervisor and Instructor: Professor Jorma Tarhio

© 2006–2007 Henri Sivonen

Digital versions of this thesis (including the source files) may be obtained
from:
http://hsivonen.iki.fi/thesis/

DRAFT NOT EFFECTIVE YET! This literary work (“Work”) is licensed un-
der the Creative Commons Attribution-ShareAlike license version 2.5 or
later (“License”). The license text is available from
http://creativecommons.org/licenses/by-sa/2.5/. You may have received
the Work aggregated in a digital file or on a tangible medium together with a Creative Commons li-
cense badge graphic and/or the “wing” emblem of the Helsinki University of Technology, and/or
you may have received the Work in a digital file that contains embedded fonts. The license badge, the
“wing” emblem and the embedded fonts are not part of the Work and are not covered by the License.
For avoidance of doubt, when the Work or a Derivative Work is distributed as a file containing em-
bedded fonts (e.g. PDF) or as a markup document accompanied by external style definitions and the
markup document can be intelligibly rendered using the default style definitions of typical rendering
software (e.g. semantic HTML orLATEX using standard macro names), the embedded fonts or the ac-
companying external style definitions are not considered to be subject to the ShareAlike provision of
the License by the Licensor and are not required to be licensed under the License.

The Licensor believes that the license badge, the “wing” emblem and the embedded fonts do not
encumber exercising the rights granted under the License for distribution of verbatim copies of the
Work. However, if you create a Derivative Work, please ensure that you are permitted to use elements
that are not covered by the License but that you may have received together with the Work or delete
the elements if in doubt.

Please refer to http://creativecommons.org/policies for information about the use of the license
badge. If you have inquiries about the “wing” emblem, please contact the Helsinki University of
Technology.

ii

http://hsivonen.iki.fi/thesis/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/policies
http://www.tkk.fi/
http://www.tkk.fi/

Author: Henri Sivonen
Department: Computer Science and Engineering
Major: Software Systems
Minor: Strategy and International Business
Title of the thesis: An HTML5 Conformance Checker
Number of pages:
Date: XXX March, 2007
Professorship: T-106 Software Technology
Supervisor: Professor Jorma Tarhio
Instructors: Professor Jorma Tarhio
The WHATWG is developing HTML5 and XHTML5 as successors for
HTML 4.01 and XHTML 1.0. An (X)HTML5 conformance checker is expec-
ted to take the role that DTD-based validators have had with earlier
(X)HTML. Conformance checking goes beyond the capabilities of DTDs.

The WHATWG does not prescribe an implementation strategy for con-
formance checkers and does not endorse schema languages. Realizing that
no schema language is adequate for describing the conformance require-
ments for (X)HTML5, a mainly RELAX NG-based implementation ap-
proach was chosen nonetheless.

The bulk of the (X)HTML5 language is described as a RELAX NG
schema that is supported by a custom datatype library written in Java. A
Schematron schema is used alongside RELAX NG for enforcing constraints
for which RELAX NG is not suitable. The remaining requirements are en-
forced by custom code written in Java. For checking HTML5, a special-
purpose parser was developed so that the XML tools can work on
XHTML5-like parse events.

The design of the system and the experience gained so far in the ongo-
ing project are discussed. The ease of expressing and changing the gram-
mar is identified as the main benefit of RELAX NG. The inability to easily
fine-tune error messages is identified as a drawback.
Keywords:

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS

iii

Tekijä: Henri Sivonen
Osasto: Tietotekniikka
Pääaine: Ohjelmistojärjestelmät
Sivuaine: Yritysstrategia ja kansainvälinen liiketoiminta
Sivuaine: HTML5-konformanssitarkistin
Sivumäärä:
Päiväys: XXX maaliskuuta 2007
Professuuri: T-106 Ohjelmistotekniikka
Työn valvoja: Professori Jorma Tarhio
Työn ohjaajat: Professori Jorma Tarhio

Avainsanat:

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

iv

Acknowledgements

This Master’s thesis has been done at the Laboratory of Software Technology
of Helsinki University of Technology.

I want to thank Ian Hickson for all his work on HTML5, without which
this thesis would not exist.

I wish to thank Elika Etemad for developing the core RELAX NG schema
for HTML5 and reviewing and commenting on my changes to the schema.

I would also like to thank the Mozilla Foundation for funding this
project.

I want to thank James Clark for developing the Jing validation engine
that the software developed in this project is based on.

My gratitude also goes to members of the #turska and #whatwg IRC
channels as well as the members of the WHATWG mailing list.

I would like to thank YesLogic Pty. Ltd., SyncRO Soft Ltd. and Oskar
Ojala for software that I used to make this thesis publishable.

I wish to thank my instructor and supervisor professor Jorma Tarhio.
Finally, I would like to thank my parents.
Helsinki, XXX March 2007
Henri Sivonen

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Methods . 2
1.3 Objectives . 3
1.4 The Organization of this Thesis 3

2 The History of HTML Leading to HTML5 5
2.1 Early HTML . 5

2.11 Initial HTML at CERN 5
2.12 The IIIR Draft . 6
2.13 HTML+ . 6
2.14 HTML 2.0 . 7
2.15 HTML 3.0 . 7
2.16 HTML 3.2 . 8

2.2 Contemporary HTML . 9
2.21 HTML 4 . 9
2.22 ISO HTML . 10
2.23 XHTML 1.0 . 10
2.24 Modularization . 11

2.24.1 XHTML Basic 12
2.24.2 XHTML 1.1 . 12
2.24.3 XHTML Mobile Profile 12

2.3 HTML5 . 12
2.31 The Mozilla/Opera Joint Position Paper 13
2.32 The WHAT WG is Formed 14
2.33 The WHATWG Specifications 15

2.33.1 Web Forms 2.0 15
2.33.2 Web Applications 1.0 16

3 Schema Languages 19
3.1 DTDs . 19

vi

3.2 W3C XML Schema . 21
3.3 Document Structure Description 22
3.4 TREX, RELAX, XDuce and DDML 23
3.5 RELAX NG . 23

3.51 Datatyping . 24
3.52 Compact Syntax . 25
3.53 Use in This Project . 25

3.6 Schematron . 25
3.61 Using RELAX NG and Schematron Together 26
3.62 Use in This Project . 26

4 Prior Work on Markup Checking 27
4.1 The W3C Markup Validation Service 27
4.2 WDG HTML Validator . 28
4.3 Page Valet . 29
4.4 The Schneegans XML Schema Validator 30
4.5 Relaxed . 30
4.6 Feed Validator . 31
4.7 Validome . 32

5 Implementation 35
5.1 The Basic Back End . 35
5.2 The Jing Validation Engine . 36
5.3 The RELAX NG Schema . 36

5.31 The General Schema Design 37
5.32 Common Definitions 37

5.32.1 Common Content Models 37
5.32.2 Common Attributes 38
5.32.3 Common Datatypes 38
5.32.4 Parameter Switches 39

5.33 Examples of Elements 40
5.4 The HTML5 Datatype Library 42

5.41 Dates . 43
5.42 IRIs . 43
5.43 Language Tags . 44
5.44 ECMAScript Regular Expressions 45

5.5 The Schematron Schema . 45
5.51 Exclusions . 45
5.52 Required Ancestors . 46
5.53 Referential Integrity . 47

5.6 The Non-Schema-Based Checkers 48

CONTENTS vii

5.61 Table Integrity Checker 49
5.62 Checking the Text Content of Specific Elements 52
5.63 Checking for Significant Inline Content 53
5.64 Unicode Normalization Checking 54

5.64.1 Requirements 54
5.64.2 Interpretation 54
5.64.3 Implementation 55

5.7 The HTML Parser . 56
5.8 Character Model Checking . 57
5.9 The Front End . 59

6 Shortcomings 61
6.1 Non-Ideal Error Messages . 61

6.11 Bimorphic Content Models 61
6.12 Lack of Datatype Diagnostics 62

6.2 Poor Localizability . 62
6.3 Opportunities for Optimization 63

6.31 RELAX NG . 63
6.32 Schematron . 64

7 Applicability in Other Contexts 67
7.1 RELAX NG-Guided Autocompletion in Editors 67
7.2 Content Management Systems 67

8 Future Work 69
8.1 Open Up . 69
8.2 The HTML5 Parsing Algorithm 69
8.3 Tracking the Specification . 70
8.4 RELAX NG Message Improvements 70
8.5 More Non-Schema-Based Checkers 71
8.6 Assistance for Checking Human-Checkable Requirements . 72
8.7 Web Service . 73
8.8 Embedded MathML and SVG 73
8.9 Showing the Erroneous Source Markup 73

9 Conclusions 75

References 77

viii AN HTML5 CONFORMANCE CHECKER (DRAFT)

Chapter 1

Introduction

The WHATWG is developing HTML5 and XHTML5 as successors for
HTML 4.01 and XHTML 1.0. To be successful, a new markup language not
only needs support from browsers. It also needs tool supporting authoring.
Authoring-side tools include editors, content management systems and
quality assurance tools for checking the correctness of markup. This thesis
focuses on the latter.

1.1 Motivation
Web authors tend to make mistakes when writing HTML. The vast majority
of HTML documents on the Web are erroneous. A study on DTD-based val-
idation of Web pages estimated about 95% of pages to be invalid [Valida-
tionProbs]. A test of the HTML5 parsing algorithm on several billion docu-
ments spidered by Google indicated that 93% of documents have low-level
syntax errors [Several]. (Documents in the remaining 7% may well have
higher-level errors which are not found by the parsing algorithm and would
require a full conformance checker to find.)

Even though most Web content is broken without hope of repair and
browsers will do something with any input purporting to be HTML, it is still
useful to provide a quality assurance tool for authors. Even if browsers ad-
opt the well-defined error-recovering processing models of HTML5, authors
generally do not make errors on purpose in order to elicit particular error re-
covery response. Silent recovery from inadvertent mistakes—even if determ-
inistic and well-defined—may still confuse an author who did not mean to
invoke error recovery. The issue becomes more apparent when an author
uses a style sheet or a script that assumes the document to be correct.

1

Therefore, it is worthwhile to provide a conformance checker that helps au-
thors find their mistakes.

1.2 Methods
With HTML 4.01 and XHTML 1.0, DTD-based validators have traditionally
been used as the quality assurance tools for checking correctness even
though they do not check for all machine-checkable conformance require-
ments. An (X)HTML5 conformance checker is expected to take the role that
DTD-based validators have had with earlier (X)HTML. Conformance check-
ing goes beyond the capabilities of DTDs.

The WHATWG does not prescribe an implementation strategy for con-
formance checkers and does not endorse schema languages. Not only are
schema languages unendorsed but they are seen as being clearly inadequate.
Therefore, a non-schema-based implementation strategy is implied. Yet, as
an initial impression, abandoning schemata altogether just because they can-
not be used for checking every machine-checkable constraint seems overly
drastic.

RELAX NG was chosen as the primary schema language. Schematron
was chosen as a supporting schema language. Using RELAX NG for
document-oriented schemata (as opposed to databinding-oriented schemata)
had gained acceptance as the best practice among users XML schema lan-
guages. Schematron had gained popularity as a language for refining a
RELAX NG schema. A project for developing a RELAX NG schema for
HTML5 had already been started by Elika Etemad [Whattf]. Moreover, this
author had already developed a service that allows Web users to validate
XML documents against arbitrary RELAX NG and Schematron 1.5 schemata
[ValidatorAbout]. The service was built in the Java programming language
due to the excellent availability of XML tools for Java. Etemad’s schema pro-
ject and the service developed by this author were chosen as starting points
for this thesis project.

It was obvious that schemata alone would be inadequate, so it was de-
cided to augment schemata with custom code instead of rejecting schema
languages altogether. Since the validation service that this project was based
upon was written in Java, also the custom code for augmenting schema-
based validation was developed in Java.

Since the parsed syntax tree for HTML5 and the parsed syntax tree for
XML are very similar and reusable tools exist for XML, it was decided to use
XML tools and to map HTML5 documents to equivalent XHTML5 represent-
ations in the parser.

2 AN HTML5 CONFORMANCE CHECKER (DRAFT)

1.3 Objectives
The functional objective of the project described in this thesis is developing a
partial (X)HTML5 conformance checker that is comprehensive enough to
demonstrate that it can be taken to completion once (X)HTML5 itself has sta-
bilized. The research goals are finding out if a hybrid implementation based
both on schemata and on custom code developed in a general-purpose pro-
gramming language is feasible and finding out if XML tooling can be suc-
cessfully applied to checking the non-XML serialization of HTML5.

1.4 The Organization of this Thesis
This thesis has two thematic parts. The first part—the next three chapter-
s—reviews the context of this work. HTML5 is placed in historical context
(page 5), schema languages for XML are reviewed (page 19) and prior work
on online markup checking services is reviewed (page 27). The second
part—the last five chapters—focus on the software implemented in this pro-
ject. The implementation of the software (page 35) and its shortcoming (page
61) and applicability to other contexts (page 67) is discussed. Finally, the
need for future work is reviewed (page 69) and the conclusions given (page
75).

CHAPTER 1. INTRODUCTION 3

Chapter 2

The History of HTML Leading to
HTML5

In this chapter, the history of HTML leading to HTML5 is reviewed. Since
one of the major changes in HTML5 is the way the specification deals with
parsing and the stance the specification takes with respect to SGML, each
version of HTML prior to HTML5 is summarized in terms of the key fea-
tures introduced and in terms of the stated relationship to SGML or XML.

2.1 Early HTML
In this review, HTML version prior to HTML 4.0 are considered early, as
they are not in active use when new documents are created.

2.1.1 Initial HTML at CERN
Tim Berners-Lee invented the Web in 1989. The first version of his browser
was released in 1990[Raggett]. It used HTML, but the language was not
formally specified at first. Tim Berners-Lee designed HTML following ideas
from SGML. However, HTML was not layered on top the SGML standard
but, rather, used similar tags without being a true application of SGML.

The element names available in HTML were largely taken from
SGMLguid, an application of SGML used at CERN. SGMLguid, in turn, was
similar to Waterloo SCRIPT GML[WaterlooGML], a GML language specified
at University of Waterloo. (GML was IBM’s predecessor to
SGML.) [EarlyHistory] There are also similarities with the language given in
the tutorial of the SGML standard[Handbook].

5

2.1.2 The IIIR Draft
The www-talk mailing list was founded in September 1991 for discussing
matters related to the Web. The development of HTML was discussed on the
list. [Raggett]

Tim Berners-Lee and Dan Connolly wrote an Internet Draft specification
for HTML as part of the activity of the Integration of Internet Information
Resources (IIIR) working group of the IETF. The Internet Draft was pub-
lished in June 1993. [IIIR-HTML]

The draft said that HTML was defined in terms of SGML. However, the
specification did not specify an HTML document as a conforming SGML
document entity but instead said how to construct an SGML document from
a transferred HTML file[IIIR-HTML]. The draft also suggested that an
HTML parser would not need to be a full SGML parser but a parser that
only deals with the document instance after the DTD[IIIR-HTML]. The
SGML-purity of the drafted HTML approach was challenged[ToBeDeleted]
by W. Eliot Kimber, an SGML expert, and the stated approach was changed
in later specifications although browsers continued to behave as before.

The mailing list discussions about the relationship of HTML to SGML are
reviewed in [Cascading].

The IIIR draft already included the IMG element. The P element was
defined as an empty element that indicates paragraph breaks. As in interest-
ing detail, the XMP, LISTING and PLAINTEXT elements were considered ob-
solete as early as in the draft. [IIIR-HTML]

The draft expired and did not reach the RFC status.

2.1.3 HTML+
One of the participants to www-talk, Dave Raggett, visited Tim Berners-Lee
at CERN to discuss further development face to face. Raggett went on to
draft a new version of HTML called HTML+. [Raggett]

HTML+, published in late 1993, specifically stated that it was “based on
the Standard Generalized Markup Language”. It also had a DTD. However,
it was implied that there would be “HTML+ parsers” which would be differ-
ent from “other SGML parsers”. HTML+ explicitly excluded SGML minim-
ization features. It used the P element as a paragraph container but said that
author may think of the P tag as a paragraph separator. [HTMLplus]

HTML+ had a number of elements that never made into real-world
HTML, such as BYLINE, ONLINE, PRINTED, ABSTRACT. As a curious detail,
HTML+ included and element called IMAGE, which used the element con-
tent as the alternative text. HTML+ made an attempt to address the issue of

6 AN HTML5 CONFORMANCE CHECKER (DRAFT)

mathematical formulae, but the attempt was not particularly pro-
found. [HTMLplus]

HTML+ defined markup for tables. The table markup is roughly what
was later adopted in HTML 4. HTML+ also defined markup for forms simil-
ar to what was actually adopted in real-world browsers. However, the field
types also included types that were not adopted, such as URL, DATE and
SCRIBBLE (for drawing). [HTMLplus]

HTML+ never made it to mainstream browser implementations.
However, at the first World Wide Web conference it was agreed that the
ideas from HTML+ should be carried forward.[Raggett]

2.1.4 HTML 2.0
Dan Connolly had advocated a cross-browser HTML specification at the first
World Wide Web conference. In early 1994, the Internet Engineering Task
Force formed a working group to specify HTML. The working group—with
Connolly in the lead—defined HTML 2.0 based on the then-current practice.
The HTML 2.0 draft was published in July 1994. [Raggett]

HTML 2.0 reached the RFC status in November 1995. HTML 2.0 expli-
citly claims that “HTML is an application of ISO Standard 8879:1986 Inform-
ation Processing Text and Office Systems; Standard Generalized Markup
Language (SGML).”[RFC1866] However, it was too late to make browsers
use real SGML parsers. Instead, browsers continued to use special-purpose
HTML parsers without standard error recovery behavior. HTML 2.0 in-
cluded a DTD, but the DTD was of no interest to browsers.

Unlike the elements proposed in HTML+, the elements of HTML 2.0
were (and still are) actually supported by real-world browsers. HTML 2.0 in-
cluded forms but did not include tables which had been proposed in
HTML+. Regardless, Netscape implemented tables in its browser in the
HTML 2.0 era and made tables popular.

HTML 2.0 established that the document character set of HTML is ISO-
10646 (equivalent to Unicode) regardless of the character encoding used to
transfer the document. However, the internationalization of HTML 2.0 was
not fully addressed in the HTML 2.0 specification itself, and a standards
track RFC that extended HTML 2.0 to address internationalization issues
was published as late as in 1997[RFC2070].

2.1.5 HTML 3.0
Both Netscape and the W3C were founded in 1994. Netscape added features
to HTML on its own. Dave Raggett—this time representing the

CHAPTER 2. THE HISTORY OF HTML LEADING TO HTML5 7

W3C—edited a specification called HTML 3.0 which carried on the ideas of
HTML+ instead of attempting to formalize the Netscape exten-
sions. [Raggett]

To support the use of style sheets, HTML 3.0 introduced the STYLE ele-
ment and the CLASS attribute, which lived on. [Raggett]

An HTML 3.0 draft was published though the IETF as an Internet
Draft[HTML30], but it was not adopted in mainstream browsers. HTML 3.0
was abandoned and never reached the RFC status[Raggett].

Even though HTML 3.0 as a whole was dropped, a specification for
HTML tables (as an extension to HTML 2.0) was published as an experi-
mental RFC. [RFC1942]

2.1.6 HTML 3.2
In November 1995, representatives of browser vendors and the W3C formed
an HTML working group at the W3C. In December 1995, the IETF HTML
working group was disbanded. [Raggett]

In January 1997, the W3C published HTML 3.2 as a Recommendation.
Unlike HTML 3.0, HTML 3.2 documented actual practice that had grown as
extensions to HTML 2.0. The specification itself stated: “HTML 3.2 aims to
capture recommended practice as of early ’96 and as such to be used as a re-
placement for HTML 2.0 (RFC 1866).” [HTML32]

HTML 3.2 continued to assert that HTML is an application of SGML:
“HTML 3.2 is an SGML application conforming to International Standard
ISO 8879 – Standard Generalized Markup Language. As an SGML applica-
tion, the syntax of conforming HTML 3.2 documents is defined by the com-
bination of the SGML declaration and the document type definition (DTD).”
However, even the specification itself admitted that SGML-compliance of
user agents was not part of the actual practice as of early ’96 by noting:
“Note that some user agents require attribute minimisation for the following
attributes: COMPACT, ISMAP, CHECKED, NOWRAP, NOSHADE and NOHREF.
These user agents don’t accept syntax such as COMPACT=COMPACT or
ISMAP=ISMAP although this is legitimate according to the HTML 3.2
DTD.”. [HTML32]

In documenting the actual practice, HTML 3.2 included presentational
features such as the FONT element that would later be frowned upon.

8 AN HTML5 CONFORMANCE CHECKER (DRAFT)

2.2 Contemporary HTML
The versions of HTML discussed above are of historical interest and are not
in active use for creating new documents. The versions in current use start
with HTML 4.

2.2.1 HTML 4
HTML 4.0 was published as a W3C Recommendation in December
1997[HTML40]. It was revised without incrementing the version number,
and the revision was published in April 1998[HTML40rev]. Another revision
called HTML 4.01 became a W3C Recommendation in December
1999[HTML401].

Once again, the specification claimed that “HTML 4 is an SGML applica-
tion conforming to International Standard ISO 8879 – Standard Generalized
Markup Language.”[HTML401] Yet, the specification acknowledged the
reality that user agents in general are not conforming SGML systems:
“SGML systems conforming to [ISO8879] are expected to recognize a num-
ber of features that aren’t widely supported by HTML user agents. We re-
commend that authors avoid using all of these features.”

HTML 4 deprecated presentational features such as the FONT element
that had made its way to a W3C Recommendation less than a year prior to
the first version of HTML 4. In principle, HTML 4 tried to backpedal on the
point of presentational features to where HTML 2.0 was—with the intent of
leaving presentation to style sheets. HTML 4 without the deprecated fea-
tures was termed Strict and HTML 4 with the presentational features was
termed Transitional. In practice, the deprecated features continue to be used.

HTML 4 added features for adding more structure to tables, for adding
more structure to forms, and for marking up insertions and deletions. The
table model adopted by HTML 4 is a subset of the model proposed in the ex-
perimental RFC on HTML tables [RFC1942]. Internationalization features,
including support for bidirectional text (e.g. for Hebrew and Arabic), were
adopted from the standards track RFC on the internationalization of HTML
[RFC2070].

HTML 4 introduced the OBJECT element, which was supposed to even-
tually replace IMG, APPLET and the Netscape EMBED elements. EMBED did
not fit together with an SGML DTD, because it could take arbitrary attrib-
utes. However, in practice, browsers continued to support EMBED, and even
today browsers do not fully support OBJECT as designed.

HTML 4 formalized frames that had been introduced by Netscape and
that were frowned upon[Frames] even before their inclusion in HTML 4.

CHAPTER 2. THE HISTORY OF HTML LEADING TO HTML5 9

Additionally, HTML 4 introduced IFRAME, which was not part of Netscape
frames.

2.2.2 ISO HTML
In 2000, ISO standardized its own version of HTML by referencing a subset
of HTML 4.0 as defined by the W3C but, yet, also making changes other than
mere subsetting in the DTD[ISO15445]. A technical corrigendum changed
the references to HTML 4.01[ISO15445TC1].

In practice, ISO HTML is only of curiosity value, since it has been largely
ignored by Web authors.

2.2.3 XHTML 1.0
XML was published as a W3C Recommendation in February 1998[XML].
XML is a simplification of SGML that stands alone without making a norm-
ative reference to SGML. Since HTML was supposedly an application of
SGML and the W3C now had its own replacement for XML, the W3C de-
cided to swap the markup language framework from underneath HTML.
The result was XHTML 1.0—a reformulation of HTML 4 in XML. XHTML
1.0 became a Recommendation in January 2000[XHTML10].

XHTML 1.0 includes the features that were deprecated in HTML 4—that
is, XHTML 1.0 has three version just like HTML 4: Strict, Transitional and
Frameset.

To be compatible with existing HTML user agents, XHTML 1.0 included
compatibility guidelines commonly known as “Appendix C”. Appendix C
limits the syntactic sugar permitted by XML 1.0 so that an XHTML 1.0 docu-
ment that adheres to Appendix C could be processed by existing HTML user
agents if served as text/html. Appendix C relies on the fact that real-
world browsers do not actually process text/html as SGML.

Appendix C made it easy to pretend that something new had been
achieved, because a new language could be deployed but the user agents did
not need to be updated. Obviously, since the browsers gained no new capab-
ilities, using XHTML 1.0 could not actually deliver any true benefits over
HTML 4 in user agents designed for HTML. No XML processor was in-
volved despite the XHTML 1.0 being a reformulation in XML! In fact, the
HTML WG of the W3C gave an explicit opinion that browsers should not try
to process documents served as text/html using a real XML processor.

Later, the makers of notable browser engines (except the maker of the en-
gine with the largest desktop market share) actually took the XML nature of
XHTML seriously and implemented support for XHTML 1.0 using a real

10 AN HTML5 CONFORMANCE CHECKER (DRAFT)

XML processor when the document is served using the
application/xhtml+xml media type (instead of text/html). This ap-
proach has not become popular for three reasons: First, since XHTML 1.0 is a
reformulation of HTML 4 on top another markup language framework, it
(alone) does not enable new interesting things in the browser, which means
there is not a compelling technical advantage to be gained from using
XHTML 1.0 served as application/xhtml+xml over HTML 4.01 served
as text/html. Second, the browser engine with the largest desktop market
share (Trident that is the engine of Microsoft’s Internet Explorer) does not
support application/xhtml+xml. Third, when a real XML processor is
used, an error is reported if the document is not syntactically XML. This
means that author need to pay more attention to actual correctness as op-
posed to merely claiming to be using something new.

Moreover, there are subtle differences in the ways CSS and the DOM API
exposed to JavaScript interact with text/html and
application/xhtml+xml. Differences involve issues such as case-
sensitivity and whether elements are namespace[MozFAQ]. Also,
document.write(), which allows scripts to insert data into the character
stream being parsed, does not work in XML. In practice, script written
naïvely for XHTML served as text/html do not work when the document
is served as application/xhtml+xml.

There are experts close to the development of browser engines who have
discredited the practice of serving XHTML as text/html (e.g. [Harmful] and
[Understanding]).

2.2.4 Modularization
The W3C decided to abandon the development of the old non-XML HTML
and to only develop XHTML. After the reformulation of HTML 4 in XML,
which became XHTML 1.0, the W3C HTML working group proceeded to
modularize XHTML. Modularization meant dividing XHTML into logical
parts such as Hypertext Module or Image Module and rewriting the previ-
ously monolithic DTD as multiple files following the logical module
partitioning.

The rationale for the modularization was based on the belief that one size
of XHTML did not fit all client platforms. In the words of the specification it-
self: “This modularization provides a means for subsetting and extending
XHTML, a feature needed for extending XHTML’s reach onto emerging plat-
forms.”[M12N] The rationale for modularization implicitly assumes a walled
garden-style world view of mobile operators where a client platform design
can dictate a language subset used on the network. Such a view assumes a

CHAPTER 2. THE HISTORY OF HTML LEADING TO HTML5 11

separate “Mobile Web”, because—quite obviously—the real Web would still
use full HTML or XHTML.

2.2.4.1 XHTML Basic
XHTML Basic[XHTMLBasic], published in late 2000, defines a baseline for
XHTML languages built on top the Modularization. The specification itself
lists “mobile phones, PDAs, pagers, and settop boxes” as target
devices[XHTMLBasic].

2.2.4.2 XHTML 1.1
XHTML 1.1[XHTML11], published in 2001, was the first (X)HTML specifica-
tion since HTML 4 that introduced a new feature. XHTML 1.1 includes the
XHTML modules that correspond to XHTML 1.0 Strict. Additionally,
XHTML 1.1 includes the XHTML Ruby Annotation module[Ruby] for ex-
pressing a type of text annotations used in East Asia.

Microsoft’s Internet Explorer for Windows supports a draft version of
Ruby markup when used in text/html documents. However, the most
notable browsers that support application/xhtml+xml do not support
Ruby. Therefore, in practice, XHTML 1.1 has failed to make a significant
practical impact.

2.2.4.3 XHTML Mobile Profile
In 2001, WAP Forum—a consortium of mobile phone manufacturer-
s—defined a superset of XHTML Basic called XHTML Mobile Pro-
file[XHTML-MP]. XHTML Mobile Profile import some modules only par-
tially, which demonstrates the those who subset XHTML will not necessarily
do so in a manner prescribed by the W3C.

To confuse the media type matter further, WAP Forum registered the
type application/vnd.wap.xhtml+xml for XHTML Mobile Profile
documents.

2.3 HTML5
The above review explains the context in which HTML5 was born. Prior ver-
sions of HTML had officially been applications of SGML, but browsers were
actually using special-purpose HTML parsers rather than SGML parsers.
Moreover, significant new features had not been introduced in years and the
work had focused on reformulating the syntax as XML. Yet, document

12 AN HTML5 CONFORMANCE CHECKER (DRAFT)

purporting to use the reformulated XML syntax were still served as
text/html, so browsers kept using the same special-purpose parsers as
before.

There was demand for new features for HTML and demand for the re-
cognition of the fact that text/html content was parsed neither as SGML
nor as XML.

2.3.1 The Mozilla/Opera Joint Position Paper
In June 2004, the W3C held a workshop on Web Applications and Com-
pound Documents. The Mozilla Foundation and Opera Software—the two
most active browser vendors in the W3C at the time—submitted a joint posi-
tion paper noting the “rising threat of single-vendor solutions” and calling
for seven principles to be followed in the design of Web Applications Tech-
nologies[JointPosition].

The balance of power in the W3C had shifted from traditional desktop
browser vendors to various other interest groups such as makers of software
for mobile walled gardens and developers of “rich client” technologies that
could be deployed on intranets but that were not used by the general public
on the Web. This had lead to a situation where the focus was more on the
“Semantic Web”, “Web Services” and “Mobile Web” than on what is usually
considered “the Web”. As a result, the development of the Web itself had
been neglected and the two browser vendors were trying to put the Web
back on the agenda. (At the time Microsoft—a notable browser vendor it-
self—was pushing a single-vendor solution code named
Avalon[MS-WebApps] and Apple was catching up having entered the mar-
ket only recently.)

The first one of the seven principles in the Mozilla/Opera position paper
was “Backwards compatibility, clear migration path”[JointPosition]. The
transition from HTML 4 to XHTML 1.0 had not worked out smoothly as dis-
cussed above. Also, XForms—the W3C’s successor for HTML forms—did
not provide backwards compatibility or a clear migration path. Moreover,
the HTML working group was working on XHTML 2.0, which was designed
to be incompatible with XHTML 1.x, even though even though even the
transition to XHTML 1.x served as application/xhtml+xml was not
complete.

The position paper called for well-defined error handling—something
that had never been addressed for HTML. It also took a position in favor of
graceful recovery (as in CSS) and against the Draconian error policy of XML.

The paper called for every feature to be backed by a practical use case
and for the specification process to be open. This is in stark contrast with

CHAPTER 2. THE HISTORY OF HTML LEADING TO HTML5 13

including features that are “nice to have” in theory and making decisions on
the W3C’s member-only mailing lists.

The paper took a position against device-specific profiles—in direct con-
trast with the Modularization of XHTML discussed above as well as mobile
profiles of other W3C deliverables such as SVG. The paper also took a posi-
tion more favorable to scripting (JavaScript in practice) than what has been
the general line in the W3C.

The paper went on to list specific features that a Web application host en-
vironment should provide.

The paper stated two design principles for compound documents: “Don’t
overuse namespaces” and “Migration path”. The latter was related to the
problems with the HTML to XHTML migration discussed above. The posi-
tion paper was dismissive of schema languages.

The position paper made several references to XBL—a very politicized
language.

2.3.2 The WHAT WG is Formed
The proposal presented by Opera Software and the Mozilla Foundation was
not well received at the W3C. At the end of the second day of the workshop,
a straw poll was held on the topic of the joint position paper: whether the
W3C should developed extensions to HTML, CSS and the DOM as pro-
posed. Of the 51 attendees of the workshop, 8 voted in favor of the motion
and 11 voted against. When the motion was slightly reformulated, 14 voted
against. [cdf-ws-minutes2]

Two days after the vote at the workshop, The Web Hypertext Applica-
tions Technology Working Group (WHATWG) and its public mailing list
were publicly announced. The group was described as “a loose, unofficial,
and open collaboration of Web browser manufacturers and interested
parties”. The stated intent was creating specification for implementation in
“mass-market Web browsers, in particular Safari, Mozilla, and Oper-
a”. [WHAT-Ann]

The initial (invite-only) membership of the WHATWG consisted of indi-
viduals affiliated with Opera Software, Mozilla and Apple. (Ian Hickson, the
editor of the WHATWG specifications, later moved to Google.) However, in
the view of the Web held by the WHATWG, there is also a fourth mass-
market browser: Microsoft’s Internet Explorer—the leader in market share.
Microsoft is not participating in the WHATWG despite having been invited.
The publicly stated reason is that the WHATWG lacks a patent policy
[Wilson]. Dean Edwards, a non-Microsoft Internet Explored expert, joined
the WHATWG later.

14 AN HTML5 CONFORMANCE CHECKER (DRAFT)

Even though the group of WHATWG “members” is invite-only, anyone
is allowed to join the WHATWG mailing list and contribute technically,
which makes the process open. The WHATWG members “provide overall
guidance” [WHAT-Charter], which in theory means the power to impeach
and replace the editor of the specifications.

Microsoft is not expected to implement the WHAT WG specifications in
Internet Explorer in the near term. Instead, the implementations of the
WHAT WG specifications for IE are expected to be built by teams not affili-
ated with Microsoft using the extensibility mechanisms provided by Mi-
crosoft in IE.

The author of this Thesis shares the view of the Web that holds Gecko,
Presto, WebKit and Trident (the engines of Mozilla/Firefox, Opera, Safari
and IE, respectively) the most important browser engines.

2.3.3 The WHATWG Specifications
The WHATWG has two specifications in development and another two that
are expected in the future. [WHAT-Charter]

The two specifications being developed are Web Forms 2.0[WebForms2]
and Web Applications 1.0[WebApps]. Web Forms 2.0 is an update to HTML
4.01 forms. Web Applications 1.0 is a re-specification of HTML that both
constrains and extends HTML. The language specified by Web Forms 2.0
and Web Applications 1.0 taken together is colloquially referred to as
(X)HTML5.

The two expected future specifications are Web Controls 1.0 for creating
new widgets and CSS Rendering Object Model for defining programmatic
access to the CSS rendering tree. [WHAT-Charter]

2.3.3.1 Web Forms 2.0
Web Forms 2.0 extends HTML forms with new features. The HTML forms as
of HTML 4.01 are considered “Web Forms 1.0”. Web Forms 2.0 is not a stan-
dalone specification. Instead, it specifies updates to HTML 4.01 and the
DOM. The choice of updates is based on what has been identified as com-
mon needs and what can be implemented as a script-based library for Inter-
net Explorer.

The most obviously visible new features are new input field types. For
example, there are new inputs for dates which can be implemented in
browsers by popping up a platform specific calendar widget. The new input
types are backwards compatible in the sense that unknown input types de-
grade into text inputs in legacy browsers. Simple constraints on the values of

CHAPTER 2. THE HISTORY OF HTML LEADING TO HTML5 15

the input field can be declared and checked by the browser without the form
author having to resort to scripting. For complex restrictions, new integra-
tion points for scripts are provided.

In addition to the new input types, there is also a repetition model for
adding and removing repeating sets of fields from the form without script-
ing. A new XML form submission format in introduced. The format can also
be used for loading values into the form fields.

Web Forms 2.0 is the most mature part of the new features of HTML5. It
has already been implemented and shipped in the Opera 9 browser.

Two primary snapshots of the Web Forms 2.0 specification were used in
this project. The first snapshot was taken at the start of the thesis project and
was dated January 10 2006. The second snapshot was taken in November
2006 and was dated October 12 2006. In March 2007, a third snapshot was
not necessary, because the specification had not changed.

2.3.3.2 Web Applications 1.0
Web Applications 1.0 is the main specification for HTML5. The name of the
specification highlights the Web application focus of the new features. An
XML-based parallel language called XHTML5 is specified alongside
HTML5.

The specification has two general areas that are intertwined. One one
hand, new features are specified. On the other hand, existing features are
specified in detail that was absent from previous specifications. When exist-
ing features are respecified, the behavior of the four notable mass-market
browsers is reverse engineered and the specification is made compatible
with the existing practice. New features are based on expected use cases.

As the name of the specification suggests, there are new features aimed
for Web applications. New application-oriented markup includes canvas
for establishing a canvas onto which scripts can draw, menu and command
for building menus, meter and progress for representing gauges and pro-
gress indicators, datagrid for a complex data display widgets, details
for additional information that can be hidden and event-source for indic-
ating that the page listens to server-sent remote events.

In addition to new element, the specification includes a number of script-
ing APIs for Web applications, but they are outside the scope of this thesis.

The addition of new elements for document structure is based on an ana-
lysis of common class attribute values as used on the Web [Stats]. New ele-
ments for document structure include section for document sections, nav
for identifying page navigation, article for marking up standalone parts

16 AN HTML5 CONFORMANCE CHECKER (DRAFT)

of page content, aside for tangential notes, header for complex headers
and footer for page footers.

Finally, HTML5 breaks the tradition of calling HTML an application of
SGML and specifies an HTML-specific parsing algorithm in meticulous
detail.

CHAPTER 2. THE HISTORY OF HTML LEADING TO HTML5 17

Chapter 3

Schema Languages

In this chapter, XML schema languages are reviewed in order to put the
choice of RELAX NG and Schematron in context.

A schema partitions the set of all XML documents into two disjoint sets:
document that are valid according to the schema and documents that are not
valid according to the schema. A computer language for expressing a
schema is called a schema language.

There are two main classes of schema languages: grammar-based schema
languages and schema languages that are not grammar-based. The proper-
ties of grammar-based schema languages in terms of mathematics and form-
al language theory as well as the related validation algorithms are discussed
in [Taxonomy]. Three types of grammar-based languages are identified: loc-
al, single-type and regular (from least expressive to more expressive). The
paper identifies three classes of schema languages in addition to grammar-
based languages: special-purpose languages dedicated to particular kind of
information that may be represented as XML, languages for representing
identity constraints and languages for namespace-based validation
dispatching.

3.1 DTDs
XML has a built-in schema language called DTDs. DTD is short for docu-
ment type definition. However, for reasons explained below, it does not ac-
tually define the type of the document in a useful way. Unlike many later
schema languages for XML, the syntax of DTDs is not comprised of XML
elements and attributes. Rather, the DTD syntax is separate from the syntax
for elements and attributes. (It is sometimes said that DTDs do not have an

19

XML syntax, but this is misguided in the sense that the DTD syntax is part of
XML.)

DTDs are grammar-based. The expressiveness of DTDs is relatively weak
compared to other schema languages. In [Taxonomy], DTDs are classified to
be of the type “local”, which is the weakest grammar type. A grammar-
based schema language is classified as “local” if there are no competing pro-
ductions. Two non-terminal productions compete if they have the same ter-
minal on the right-hand side of the productions. The practical consequence
is that the content model of an element cannot depend on the context of the
element is the document tree.

SGML DTDs were slightly more expressive than XML DTDs. SGML
parsers needed to know the DTD grammar in order to be able to parse the
document. XML removed some of the more complex DTD features and
made it possible to parse documents without the parser knowing the DTD
grammar for the document.

Still, DTD-based validation is intertwined in the process of parsing XML.
Instead of the merely checking that the structure of the document meets the
constraints of the grammar, DTDs have features that augment the infoset. In-
foset augmentation means that the validation process adds some informa-
tion that is reported to the application compared to the situation where the
document is parsed without any validation formalism between the docu-
ment and the application. Infoset augmentation is problematic in three ways.

First, the DTD is usually included in the document by reference but the
XML 1.0 specification makes processing such external references optional.
As a result, the application sees a different data depending on whether the
DTD is being processed or not.

Second, being able to attach data types to attributes requires that there
not be two derivations for a given document that would assign conflicting
data types to a given attribute. To avoid this problem, the grammars ex-
pressed as DTDs are required to be unambiguous. This requirement is re-
strictive and would be unnecessary for pure non-infoset-augmenting
validation.

Third, since one of the key features of XML is that a document can be
parsed even if it does not have a DTD and since the DTD supplied by the
document itself, an application can not trust documents to supply DTDs
with particular infoset augmentation features. Therefore, applications cannot
rely on DTD-based infoset augmentation taking place, which severely limits
the usefulness of such infoset augmentation.

DTDs allow a primitive form of attribute datatyping. The possible data-
types are CDATA, ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN and
NMTOKENS. Additionally, the value of an attribute can be constrained to

20 AN HTML5 CONFORMANCE CHECKER (DRAFT)

be one of enumerated tokens. CDATA means an unconstrained string. ID,
IDREF and IDREFS exist for cross references whose integrity is checked.
(There is a single document-wide namespace for IDs and a particular refer-
ence cannot be constrained to e.g. point to elements of a certain type only.)
The only datatypes that constrain the allowed lexical space of the attribute
value without involving any referential semantics are NMTOKEN and
NMTOKENS. NMTOKEN is merely a token that satisfies a particular, relat-
ively arbitrarily specified, grammar production. NMTOKENS is a
whitespace-separated list of these. These datatypes are rather useless unless
the desired datatype constraint happens to match the definition of
NMTOKEN.

It was noted above that the documents supplies its own DTD. This is one
of the key problems. It means that DTD-based validation cannot be used for
determining if a document belongs in a class of documents (the “type” of the
document) that the recipients expects to receive. That is, if two parties have
agreed to exchange documents in a particular format the recipient cannot
use normal DTD-based validation to find out whether a given document is
in the pre-agreed format, because the sender can use another DTD in the
document. DTD-based validation only shows whether a document conform-
ance to the grammar the document declares for itself. Since DTDs require
that the schema is included in the document itself, DTDs effectively require
the document to be contaminated with schema-specific syntax.

There are implementations that allow validation against an application-
supplied DTD, but this is not a standard part of XML 1.0 processing and oth-
er schema formalisms (RELAX NG in particular) provide superior features
in such a scenario.

Lastly, DTDs do not work properly with namespaces, because the
Namespaces in XML specification layers the namespace processing on top of
XML 1.0 processing and, therefore, DTD-based validation takes place under-
neath the namespace layer—not on top of it.

DTDs were not used in this project, because DTDs are not expressive
enough, are not namespace-aware and would allow smuggling of grammar
productions by the document that is being checked.

3.2 W3C XML Schema
The W3C XML Schema (sometimes abbreviated WXS but more often XSD
for XML Schema Definition) is a schema language defined by the W3C in re-
sponse to shortcomings of DTDs. XSD is a grammar-based schema language.
In [Taxonomy], XSD is classified to be of the type “single-type”. In a

CHAPTER 3. SCHEMA LANGUAGES 21

single-type language, competing productions within a content model and
competing start symbols are prohibited. The practical consequence is that
the grammar is required to be unambiguous.

XSD provides a richer repertoire of data types than DTDs. In fact, data
typing is seen as one of the major improvements over DTDs. XSD validation
very much involves infoset augmentation. Instead of merely checking
whether a document satisfies the schema, the XSD validation process yields
a Post-Schema Validation Infoset (PSVI) which is the infoset of the validated
document augmented with data type information.

The concept of PSVI stems from the data-orientedness of XSD—as op-
posed to document-orientedness. XSD is biased towards use cases that in-
volve serializing objects or database items as XML and, on the other hand,
databinding which involves doing the reverse. Despite the data type focus of
XSD, the data type system is not extensible. The schema author has to get by
with the data types that the specification provides. For this reason it is not
uncommon to see schemata that do not constrain the data type of a given at-
tribute, even when the attribute has a very specific format.

XSD is rather verbose and, therefore, inconvenient to write. After a com-
pact syntax for RELAX NG (page 25) was developed and found useful, a
compact syntax for XSD was developed by Kilian Stillhard.[CompactXSD]
However, this format is not standardized and appears not to have gained
wide acceptance.

XSD is anecdotally notorious for partial implementation and implement-
ations that are not interoperable. The anecdotes gained more credibility after
a workshop on XML Schema 1.0 User Experiences and Interoperabil-
ity[SchemaUE] was held by the W3C. Reports about the problems faced with
XSD were summarized by Rick Jelliffe on the xml-dev mailing list in
[Freddy].

The failures of XSD are discussed in more detail in [IntroXML].
XSD was not used in this project due to its questionable reputation, its

verbosity and its data-orientedness and relative lack of acceptance in
document-oriented tasks.

3.3 Document Structure Description
Document Structure Description (DSD) is a schema language developed at
the University of Aarhus and AT&T Labs Research. In [Taxonomy], DSD 1.0
is classified as “single-type” and DSD 2.0 is classified to be able to represent
any regular tree grammar.

22 AN HTML5 CONFORMANCE CHECKER (DRAFT)

DSD was not used in this project due to the wider acceptance of RELAX
NG and Schematron and the tool availability situation. DSD has largely been
sidelined in the marketplace with XSD on one hand and the DSDL family of
languages (see below) on the other hand being the main contestants.

3.4 TREX, RELAX, XDuce and DDML
There have been various also-ran schema languages in the quest for a re-
placement for DTDs. Perhaps the most famous ones are TREX by James
Clark and RELAX by Makoto Murata. These languages were the basis of
RELAX NG (discussed below), which has superseded them. Document
Definition Markup Language (DDML) was published as a W3C Note but
was abandoned in favor of XSD. XDuce has not gained wide acceptance.

3.5 RELAX NG
RELAX NG is a grammar-based schema language for XML. In [Taxonomy],
it is classified to be of the most powerful kind of tree grammars: “regular”. It
was developed from the basis of TREX and RELAX in OASIS (Organization
for the Advancement of Structured Information Standards) with James Clark
and Makoto Murata (the developers or TREX and RELAX respectively) as
the editors of the specification. RELAX NG has also been subsequently
standardized as Part 2 of the Document Schema Definition Language
(DSDL) family[ISO19757-2].

James Clark describes RELAX NG as an evolution and generalization of
XML DTDs based on experience both from SGML and XML. Design patterns
used for writing DTDs can be applied to RELAX NG. Moreover, DTD is can
be programmatically converted into RELAX NG. [RNGdesign]

RELAX NG treats elements and attributes in a uniform way to the extent
possible. This means that co-occurrence constraints between attributes and
the content model of an element are possible.

RELAX NG is strictly for validation. No infoset augmentation is per-
formed. Since there is no need to ambiguously assign augmentation is to the
infoset, ambiguous grammars are allowed. A document is a valid according
to RELAX NG schema if there is at least one derivation for the document in
the grammar expressed by the schema. It does not matter if there are mul-
tiple derivations. Allowing ambiguous grammars makes RELAX NG
schemata easier to write than DTDs or XSD. (Note: There exist tools that use
RELAX NG purposes other than validation and these tools tend to place

CHAPTER 3. SCHEMA LANGUAGES 23

restrictions on grammar ambiguity. Still, ambiguous grammars are allowed
by the core specification.)

3.5.1 Datatyping
RELAX NG has only two built-in data types: string and token. Addition-
ally, there is a list pattern that allows data types to be used in white space-
separated lists. The string type allows all strings that are legal in XML.
Also, a schema may enumerate permissible string values that are com-
pared using strict code point for code point comparison. The token data
type normalizes whitespace before such comparison.

In addition to the built-in datatypes, RELAX NG has a framework for
pluggable datatype libraries. A datatype library makes it possible to use a
Turing-complete programming language for checking whether a string con-
forms to a particular datatype. In formal terms, a datatype (with given para-
meters) is a formal language and an equivalence relation for strings of the
language.

Each possible string of XML characters either belongs to the language of
the datatype or does not belong in the language. For example, a datatype for
dates could accept strings that represent valid Gregorian dates in the ISO
8601 notation and reject all other strings.

At minimum, each string needs to be equivalent with an identical string
(reflexivity). However, the equivalence relation may be more lax as long as it
is transitive and symmetric. For example, a datatype might accept all pos-
sible strings and define the equivalence relation as the equality of the
Unicode fold case transformations of the operands.

It is important to note that the RELAX NG notion of datatypes only con-
cerns classifying strings. Unlike the non-extensible XSD type system and the
PSVI concept, RELAX NG datatyping is not about converting the strings to
datatypes of a programming language (integers, floats, date objects, etc.).
Special-purpose tools built on top RELAX NG could use datatyping in such
a way (if they restrict grammar ambiguity), but such usage is not sanctioned
by the RELAX NG specification.

The RELAX NG specification says how datatype libraries are used from a
schema. However, the RELAX NG specification does not specify an API for
interfacing a datatype library implementation with a RELAX NG validator,
because such an API needs to be specific to the programming language used
for implementation and RELAX NG does not require any particular pro-
gramming language. However, for Java there is a de facto standard datatype
library API developed by James Clark and Kohsuke

24 AN HTML5 CONFORMANCE CHECKER (DRAFT)

Kawaguchi.[DatatypeAPI] The Java API has been also been adapted to other
languages—C# in particular.

There are two well-known datatype libraries: the XSD datatype library
[RNG-XSD] and the DTD compatibility datatype library [DTDCompat]. The
former brings the datatypes from [XSDDatatypes] to RELAX NG. The latter
brings the datatyping features of DTDs to RELAX NG. RELAX NG validat-
ors often have built-in support for these two datatype libraries.

3.5.2 Compact Syntax
RELAX NG is defined as an XML vocabulary. However, since the XML syn-
tax is designed for marking up text, it is not particularly convenient to write
or even read in cases where there’s almost no text and a lot of markup.

To address this problem, RELAX NG has an alternative Compact Syntax
[Compact]. The compact syntax is vastly more human-friendly than the
XML syntax and is intuitive to anyone familiar with the customary notation
for regular expressions and the Backus–Naur Form. Like RELAX NG proper,
the Compact Syntax was specified by OASIS and has subsequently been ad-
opted as an amendment to the ISO standard [ISO19757-2Amd1].

3.5.3 Use in This Project
RELAX NG was chosen as the main schema language for this project be-
cause of its status as the schema language of choice for document-oriented
tasks and because the a schema project and a validator project were already
in place. The Compact Syntax was chosen due to its human-friendliness.

3.6 Schematron
Schematron is an assertion-based schema language. It was developed by
Rick Jelliffe at the Academia Sinica Computing Centre (ASCC). A newer ver-
sion of Schematron has been standardized as Part 3 of the Document Schema
Definition Language (DSDL) family[ISO19757-3]. The ISO version of
Schematron is incompatible with processors for the ASCC versions of
Schematron.

A Schematron schema consist of assertions. In practice the assertions are
XPath[XPath] expressions that evaluate to true or a non-empty node set
when successful (i.e. not in error). Alternatively, the negation of this case can
be treated as the error condition (i.e. an error is reported if an expression
evaluates to true of a non-empty node set).

CHAPTER 3. SCHEMA LANGUAGES 25

This is significantly different from grammar-based schema languages. In
order for a document to conform to grammar-based schema, there has to be
a derivation for the document in the grammar. Therefore, in a grammar-
based schema, by default everything is forbidden and only the constructs
that can be derived from the grammar are allowed. In Schematron, however,
everything is allowed by default and each grammar makes a specific
restriction.

3.6.1 Using RELAX NG and Schematron Together
Adding specific restrictions without having to take a stance on the document
as a whole makes Schematron ideal for refining a cruder schema written in
another language. The creator of Schematron, Rick Jelliffe, has characterized
Schematron as “a feather duster for the furthest corners of a room where the
vacuum cleaner cannot reach”[SchematronOld]. Indeed, in the last three
years, a pattern of using RELAX NG and Schematron together has emerged:
a slightly over-permissive RELAX NG grammar is used for the bulk of the
schema and Schematron assertions are used to tighten corner cases. For ex-
ample, the schemata for the Atom syndication format[RFC4287] and
DocBook 5.0[DocBook] are RELAX NG schemata that are refined with
Schematron assertions.

The RELAX NG schema and the Schematron schema can be separate or
combined. If they are separate, the document being validated is simply val-
idated against both the RELAX NG schema and the Schematron schema sep-
arately and considered valid if it passes both validations.

In the combined case, the Schematron assertions are written inside the
RELAX NG schema. The validation phases are still separate, but the
Schematron assertions can be organized so that they appear in the relevant
element context in the RELAX NG schema for a human reader. An imple-
mentation may use the RELAX NG schema context of an assertion to estab-
lish the XPath context in Schematron. [Relaxtron]

3.6.2 Use in This Project
Following the example of Atom and DocBook, Schematron was adopted as
the secondary schema language in this project for expressing details that are
inconvenient or impossible to express in RELAX NG.

Schematron 1.5[Schematron15] was chosen for this project instead of ISO
Schematron due to lack of tool support—in particular lack of support in the
Jing engine.

26 AN HTML5 CONFORMANCE CHECKER (DRAFT)

Chapter 4

Prior Work on Markup Checking

The service presented in this thesis is not by any means the first markup
checking service on the Web. In this chapter, notable other markup checking
services are reviewed.

4.1 The W3C Markup Validation Service
The W3C Markup Validation Service (better known as the W3C Validator),
originally written by Gerald Oskoboiny, is probably the best known of the
markup checking services reviewed here. For many users, it is the validator.
It has been in use since late 1990s.

The W3C Validator is a Perl CGI front end for OpenSP. OpenSP is an
SGML parser based on James Clark’s SP. OpenSP performs DTD-based val-
idation according to [ISO8879] (SGML). That is, the input document is valid-
ated against the DTD that the document declares for itself. The front end al-
lows the user to override the DTD declared by the document, in which case
the front end modifies the document accordingly before passing it to
OpenSP. The HTML 4.01 and XHTML 1.0 specifications come with normat-
ive DTDs. Typically documents include one of the normative DTDs by refer-
ence, but a document can include any DTD.

As a matter of long-running policy, the W3C Validator sticks strictly to
the SGML validity formalism. It is often argued that it would be inappropri-
ate for a program to be called a “validator” unless it checks exactly for valid-
ity in the SGML sense of the word—nothing more, nothing less. Markup lan-
guage specifications virtually always contain conformance requirements that
cannot be expressed in an SGML DTD. Those requirements are simply not
checked for at all. For example, in HTML 4.01 Strict, the value of the
rowspan attribute is required to be a non-negative integer, but since SGML

27

DTDs cannot express this constraint, any string passes as a valid value for
rowspan. However, due to the ways validation is often promoted, users
tend to think that the W3C Validator checks for more than what it actually
does. In fact, the front page of the W3C Validator states “This is the W3C
Markup Validation Service, a free service that checks Web documents in
formats like HTML and XHTML for conformance to W3C Recommendations
and other standards.”

Another problem is related to XML support. XML 1.0 was designed to be
compatible with SGML in the sense that an XML document that is valid ac-
cording to its DTD when treated as XML is also a valid SGML document
when the Annex K of the SGML standard is in effect. The opposite is not al-
ways true, however. A document can be valid for the purposes SGML
without even being well-formed from the XML point of view. As a trivial ex-
ample, SGML does not require white space between attributes but XML
does. As a result, tools designed for SGML are not appropriate for checking
XML correctness. Yet, due to the way the W3C Validator is presented to
users, users end up using an SGML tools thinking that they are running a
tool that checks for XML validity. When giving results for XML documents,
the W3C Validator states briefly “Note: The Validator XML support has
some limitations.”

The SGML validation process requires a different SGML declaration for
XML than for HTML 4.01. The choice of SGML declaration is external to the
document. However, to avoid asking the user the rather esoteric question of
which SGML declaration to use, the W3C Validator uses heuristics to decide
which SGML declaration to use.

The code of the W3C Validator was not used as a starting point for the
software discussed is this thesis, because the W3C Validator is a DTD-based
validator for SGML documents written in Perl and C while the software dis-
cussed in this thesis started out as RELAX NG-based validator for XML doc-
uments with key libraries written in Java.

4.2 WDG HTML Validator
The Web Design Group HTML Validator[WDG] developed by Liam Quinn
is very similar to the W3C Validator. It too has been in use since the late
1990s, has James Clark’s SP inside and has a Perl front end.

Originally, the WDG HTML Validator was differentiated from the W3C
Validator by better error messages, by support for hexadecimal character
references and by support for more character encodings than just ISO-8859-1
[WDG1998]. The W3C Validator has later added all these features as well.

28 AN HTML5 CONFORMANCE CHECKER (DRAFT)

Currently, the WDG Validator is differentiated from the W3C Validator by
warning about certain SGML markup minimization features that do not
work in real-world browsers, by warning about character references to C1
control characters and by using a different SGML declaration with custom
DTDs [WDG2007]. Also, the WDG HTML Validator can spider a site and
validate multiple pages on one invocation.

Like the W3C Validator, the WDG HTML Validator is restricted to the
SGML validity formalism.

The code of the WDG Validator was not used as a starting point for the
software discussed is this thesis due to the same technical reasons that apply
to the code of the W3C Validator.

4.3 Page Valet
Page Valet is a DTD-based validator developed by Nick Kew. Page Valet
uses OpenSP for validating HTML as SGML. However, unlike the W3C and
WDG validators, Page Valet uses a real XML parser—Xerces-C—by default
for validating XML. (The option to use OpenSP for XML is offered.)

Page Valet has an experimental option for turning on XSD-based valida-
tion in Xerces-C. However, there is no user interface for providing a schema
separately from the document. That is, it is up to the document to specify its
own schema.

For SGML-based validation, Page Valet provides three parse modes:
Strict, Web and Fussy. The Strict Mode does what the W3C Validator does. It
adheres strictly to the de jure formalism even when the results are impractic-
al considering browsers. The Web Mode is described to be similar to what
the WDG HTML Validator does. That is, SGML markup minimization fea-
tures that do not work in real browsers are flagged. The Fussy Mode is de-
scribed to “add further checks over and above Web Mode”. [ValetMode]

Unlike the W3C and WDG validators, Page Valet is not a Perl CGI pro-
gram. It is implemented as a C-language Apache module called mod_valid-
ator[mod_validator]. mod_validator was not used as a starting point for the
software discussed in this thesis, because using RELAX NG within a C pro-
gram would have in practice required using libxml2 instead of Xerces-C.
Moreover, this author is more comfortable with using a managed runtime
than C for Web-facing services.

CHAPTER 4. PRIOR WORK ON MARKUP CHECKING 29

4.4 The Schneegans XML Schema Validator
The XML Schema Validator (formerly XHTML Schema Validator) by Chris-
toph Schneegans validates XML documents against XSD schemata. It does
not validate HTML documents.

While the three DTD-based validators discussed above use any DTD that
the document declares for itself, the XML Schema Validator has a closed list
of built-in XSD schemata. The user can choose a schema from a list manually
or request the validator to choose a built-in schema based on the
xsi:schemaLocation or the doctype. The schemata offered include the
three variants of XHTML 1.0, XHTML 1.1, XHTML 1.0 Basic, MathML 2.0,
XSD itself and Google Sitemaps.

The schemata for the variants of XHTML as well as XSD itself come from
the W3C. The schemata for XHTML 1.0 were published as a W3C Note
[XHTML10XSD]. The schemata for modularized XHTML were published as
a Proposed Recommendation [M12N11] (later changed back to Working
Draft).

The XML Schema Validator is written in Visual Basic .NET and is based
on the XML tool chain provided as part of the Microsoft .NET Framework
2.0. The source code is not available.

4.5 Relaxed
Relaxed by Petr Nálevka validates documents against RELAX NG and
Schematron schemata. The main advantage of Relax compared to the W3C
Validator is the ability check for requirements that cannot be expressed in
DTDs. Relaxed was originally presented in Czech in Nálevka’s thesis [Val-
idace], which I am unable to read. Relaxed has subsequently been described
in English in a paper co-written by Nálevka and his thesis instructor Jirka
Kosek [Relaxed].

Relaxed builds upon James Clark’s Modularization of XHTML in RELAX
NG [M12N-RNG]. The schemata developed by Clark have been further re-
fined and augmented with Schematron assertions. In addition to Schematron
assertions based on the conformance requirements of XHTML 1.0, Relaxed
offers optional Schematron-based checks for some of the Web Content Access-
ibility Guidelines 1.0 [WCAG] requirements. In later updates after the initial
release, schemata for compound documents that embed SVG and MathML
in XHTML have been added.

Relaxed is written in Java and JSP. It uses the Sun Multi-Schema Validat-
or (MSV) by Kohsuke Kawaguchi as its validation engine. Even though there

30 AN HTML5 CONFORMANCE CHECKER (DRAFT)

is a plug-in for MSV that enables support for Schematron assertions that are
embedded in RELAX NG, Relaxed uses a separate XSLT-based solution
where the Schematron part is first extracted from RELAX NG using XSLT,
then the resulting Schematron schema is compiled into an XSLT script using
another XSLT transformation and finally the resulting XSLT script is run
against the input document.

Relaxed offers a list of preset schemata. Custom schemata are not al-
lowed. Preset schemata are provided for XHTML 1.0, optionally with SVG
and MathML. The schemata for XHTML 1.0 can also be used for HTML 4.01.
For XHTML 1.0 and HTML 4.01 without SVG or MathML, partial WCAG
checks are available. A separate user interface is provided for a prerelease
version of DocBook 5.0.

The HTML support in Relaxed is based on the idea that HTML 4.01 can
be mapped to XHTML 1.0 before applying XML validation technologies.
There is a problem, though. Relaxed uses John Cowan’s TagSoup for the
conversion. TagSoup has not been designed for error detection. On the con-
trary, TagSoup has been designed never to report errors of any kind. There-
fore, tokenization-level errors may go unreported. Moreover, the document
is serialized as XML and then reparsed with an XML parser, which may
cause differences in line numbers.

Of the validation services reviewed in this chapter, Relaxed is the closest
to the system described in this thesis. The reason why the work described in
this thesis is not based on the Relaxed code base is that the validation service
upon which the HTML5 conformance checker is an elaboration was first de-
ployed in the spring of 2005 but Relaxed was announced later in August
2005. Effort was expended in order to test MSV in place of Jing. However,
the result was that MSV was easier to crash with user-supplied schemata.
Also, Jing supports the RELAX NG Compact Syntax but MSV does not.
Moreover, I prefer using a SAX pipeline as the output generation method in-
stead of JSP.

Even though Relaxed and the service described in this thesis do not share
Java code, the schemata developed for Relaxed are used to implement the
pre-HTML5 functionality of the service whose HTML5 part is discussed in
this thesis.

4.6 Feed Validator
The Feed Validator by Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil
Ringnalda is notably different from the services reviewed above. Whereas
the other services focus on HTML and/or XHTML, the Feed Validator

CHAPTER 4. PRIOR WORK ON MARKUP CHECKING 31

focuses on Atom and RSS feeds, which are rather different from HTML and
XHTML as markup languages. Also, the methodology used in the Feed Val-
idator is significantly different.

The Feed Validator does not use any schema formalism. Instead, it uses
hand-crafted SAX consumers written in Python. The main SAX
ContentHandler maintains a stack of element-specific delegates. Each
element-specific delegate (inheriting from a common base) can check the
conformance requirements pertaining to its element.

The approach taken in the Feed Validator has two benefits over schema-
based validation. First, the Feed Validator is not limited by the capabilities of
any schema formalism. Since Python is a full programming language, any
requirement that is machine checkable in principle is checkable by a Python
program. Second, since the emission of error messages is programmed by
humans on a case-by-case basis, the messages can be as good and informat-
ive as the human developers care to make them. In the case of grammar-
based schema languages in particular, error messages are generated by the
validation engine and context-sensitive advice is generally not provided ex-
cept by perhaps applying guesswork outside the validation engine.

It should be noted that feeds are different from (X)HTML in the sense
that there is a greater focus on string values adhering to certain formats and
the nesting structures of elements are less complex than in (X)HTML. The
Feed Validator does not validate (X)HTML content embedded in feeds.

The Feed Validator methodology was not chosen for this project, because
it was assumed that using a domain-specific non-programming lan-
guage—RELAX NG—would be more manageable in terms of effort and
malleability during the development process of HTML5. Even though Feed
Validator-style methodology was not chosen as the only methodology, the
non-schema checkers (page 48) developed in this project are similar to the
ContentHandler delegates used by the Feed Validator.

4.7 Validome
Validome by Thomas Mell, Vadim Konovalov, Alex Leporda, Olivier
Duffez, Eduard Schlein and Dirk Klar checks both (X)HTML and feeds. Ad-
ditionally, Validome offers generic XML validation against a DTD or an XSD
schema declared by the document itself. Validome also offers to check DTDs
and XSD schemata for syntax errors.

In contrast to the other services that are English-only or also provide
messages in French, Validome supports German and English as the user

32 AN HTML5 CONFORMANCE CHECKER (DRAFT)

interface languages. The (X)HTML facet of Validome also offers French and
Russian as user interface languages.

Validome uses SGML DTDs for HTML and XSD for XHTML. Addition-
ally, Validome performs non-schema checks, which sets it apart from the
other (X)HTML validators discussed above.

It is difficult to review what exactly Validome does, because its inner
workings are publicly documented and the source code is not available. Still,
it is worth emphasizing that Validome goes beyond schema formalisms
when specifications have conformance requirements that cannot be ex-
pressed as schemata.

CHAPTER 4. PRIOR WORK ON MARKUP CHECKING 33

Chapter 5

Implementation

This chapter starts the second part of this thesis which focuses on the soft-
ware implemented as the experimental part of the thesis project.

5.1 The Basic Back End
The basic architecture of the back end of the conformance checker is very
simple: A parser consumes the document byte stream and emits SAX parse
events. An arbitrary number of SAX event consumers can listen to the
events. The SAX consumers do not form a pipeline with one consumer emit-
ting events to the next. Instead, the for n consumers, the SAX event stream is
split n – 1 times.

The consumers can be schema-based validators or custom code. The con-
sumers receive SAX parse events that affect the meaning of the document.
That is, syntactic sugar is not exposed. For example, comments are not re-
ported and it is not exposed if and how characters were escaped in the
source.

The meaningful SAX events are the ones reported to the SAX
ContentHandler and DTDHandler interfaces. However, in the events re-
ported to DTDHandler (notifications of notations and unparsed entity de-
clarations) are of no interest for an (X)HTML5 conformance checker, so in
practice the SAX consumers only listen to ContentHandler. Moreover, the
processing in genuinely namespace-aware and, hence, qualified names are
not used by event consumers. Instead, the consumers observe namespace
URIs and local names.

LexicalHandler is not listened to, because exposes syntactic details
that do not affect the meaning of the document and it would be inappropri-
ate to tie conformance on the higher layer to the choice of syntactic sugar on

35

the lower layer. DeclHandler is not listened to, because it exposes declara-
tions that are intended to be expanded by the XML processor and, thus,
should not be managed by the application.

The main SAX event consumer is an instance of the Jing validation en-
gine that has been instantiated with a RELAX NG schema for HTML5 or
XHTML5.

5.2 The Jing Validation Engine
Jing by James Clark was chosen as the RELAX NG and Schematron valida-
tion engine. Jing implements James Clark’s derivative algorithm [Derivative]
for RELAX NG validation. For Schematron, Jing provides a wrapper for an
XSLT engine. The SAXON XSLT engine by Michael Kay was chosen.

5.3 The RELAX NG Schema
The bulk of what is allowed in HTML5 is encoded in a RELAX NG schema.
The core of the schema was developed by Elika Etemad [Whattf].

For the most part, the element nesting conformance requirements for
HTML5 are defined in terms of simple parent-child relationships. That is, it
is defined that a given element may have children of a given type. This sort
of requirements map trivially to a grammar.

DTDs allow only one grammar production per element name. HTML5,
however, requires a different grammar productions in different contexts. For
example, the attributes allowed on list items depend on the kind of list the
items are in. Fortunately, RELAX NG decouples grammar productions from
element names. There can be an arbitrary number of grammar productions
for a given element name. This makes it possible for elements to have a dif-
ferent attributes or content models depending on where the elements occur
in the document. For example, the form element has an empty content mod-
el when it occurs as a child of the head whereas it can have child elements
when it occurs as a descendant of the body element.

In HTML5, some elements are defined to take either block-level children
or inline-level children. Such content models are called bimorphic. In HTML
4.01 those elements generally allowed a mix of block and inline content, be-
cause DTDs cannot express the kind restriction demanded by HTML5. For-
tunately, RELAX NG can deal with bimorphic content models. When a
RELAX NG validator sees an element, the element can have multiple

36 AN HTML5 CONFORMANCE CHECKER (DRAFT)

pending derivations in the grammar. Therefore, adjacent subtrees can affect
each other in validation.

The vast majority of the conformance criteria related to the document
structure can be expressed as RELAX NG grammar. In the implementation,
the use of RELAX NG has been favored whenever practical. Still, there are
many conformance criteria that are not conveniently expressible in a RELAX
NG grammar. Schematron and custom Java code are used for those criteria.

Expressing constraints related to ancestry turned out to be impractical in
RELAX NG, even though it is theoretically possible. Balancing the needs of
the main conformance checking use case and the expected reuse of the
RELAX NG schema for e.g. guiding auto-completion in an editor turned out
to be a problem. From the conformance checking point of view, it makes
sense to handle more things in Schematron, because special cases of con-
straints on element ancestry are trivially expressed in Schematron with pre-
cise error messages whereas “remembering” ancestry in a grammar gener-
ally requires duplicating grammar productions, which leads to unmanage-
able growth of the number of grammar productions. Eventually, Schematron
was favored.

5.3.1 The General Schema Design
The schema is divided into modules. The module division is motivated both
by organizing the schema by grouping similar elements together and by
making it possible to easily subset the schema in ways deemed reasonable
by the schema authors. The schemata for different subsets include the mod-
ules that are enabled for the particular subset.

5.3.2 Common Definitions
A module called common.rnc includes definitions for the schema frame-
work. It contains switches for parameterizing the schema, initial definitions
for common content models, definitions for common attributes and defini-
tions for common data types. It also designates the grammar start symbol,
i.e. the root element.

5.3.2.1 Common Content Models
The common.rnc module initializes the definition for common content
models like this:
common.inner.strict-inline =

(text)

CHAPTER 5. IMPLEMENTATION 37

common.inner.struct-inline =
(text)

common.inner.block =
(empty)

Other modules then add to these definitions like this. For example, the fol-
lowing makes the p element allowed where block elements are allowed.
common.inner.block &= p.elem*

The &= operator redefines the named pattern on the left-hand side to be the
interleaving of right-hand side and the previous definition of the left-hand
side.

The common.rnc module also contains content model definitions de-
rived from other content model definitions:
common.inner.bimorphic =

(common.inner.struct-inline
| common.inner.block
)

The derived definitions are not augmented directly by other modules.

5.3.2.2 Common Attributes
HTML5 defines a handful of attributes that apply to all HTML elements. A
pattern called common.attrs is defined in common.rnc. The pattern
serves as a reusable pattern for element definitions and provides an exten-
sion point for modules that add attributes that apply to all elements. For ex-
ample, including the module for scripting adds event handler attributes to
all elements.

5.3.2.3 Common Datatypes
Many attributes in HTML5 take values that are required to conform to a spe-
cific format. In RELAX NG such formats are known as datatypes. As dis-
cussed before, datatypes in RELAX NG only constrain the space of allowable
string values and do not imply infoset augmentation or data binding. Except
for datatypes related to HTML forms and enumerated string values, the
datatypes used to constrain attribute values are defined in common.rnc.

When possible, the W3C XML Schema Datatypes[RNG-XSD] are used in
order to make the schema more easily portable to different RELAX NG

38 AN HTML5 CONFORMANCE CHECKER (DRAFT)

validators. In particular, the regular expression facet of the W3C XML
Schema Datatypes is used. For example, percentage values are defined as
follows:
common.data.percent =

xsd:string {
pattern = "(100)|([1-9]?[0-9](\.[0-9]+)?)%"

}

The XSD regular expressions have some unconventional quirks that require
attention when writing schemata. For example, the \d shorthand is conven-
tionally defined to mean an ASCII digit, that is U+0030 DIGIT ZERO though
U+0039 DIGIT NINE, but in XSD regular expressions \d is defined to match
any character that is classified as Nd (decimal digit) in Unicode. The XSD
definition is politically correct but less useful in practical cases. Hence,
[0-9] is used in the example above.

When the permissible lexical space of a datatype does not form a regular
language or when the lexical space would in theory form a regular language
but writing it down as a regular expression would be impractical, datatypes
from the custom-built HTML5 Datatype Library (discussed later in this
chapter) are used. For example, datatypes involving dates and IRIs are
handled using the custom-built library:
common.data.datetime =

w:datetime-tz

common.data.uri =
string "" | w:iri-ref

It is important to note that using a custom datatype library makes the
schema less portable. To use the schema with, the RELAX NG validator
needs to have an implementation of the datatype library available to it. An
alternative less precise version of the schema could be made if portability
was appreciated over correctness.

5.3.2.4 Parameter Switches
RELAX NG has two special patterns that can be used to implement boolean
feature switches. These patterns are empty and notAllowed. The empty
pattern takes no attributes or element content to satisfy. The notAllowed is
never satisfied. Hence, interleaving empty with another pattern is equival-
ent to the other pattern alone and interleaving notAllowed with another
pattern makes the interleave as a whole unsatisfiable. Thus, a named pattern

CHAPTER 5. IMPLEMENTATION 39

can be used in a schema and the effect of the pattern can be changed by
changing the definition of the named pattern from empty to notAllowed
as needed. RELAX NG makes this easy by allowing a schema file that in-
cludes another to override definitions in the file that is being included.

For example, the p element has a more versatile content model in
XHTML5 than in HTML5. In XHTML5, structured inline children—that is
inline mixed with selected primarily block elements like ul—are allowed.
(The HTML5 serialization cannot allow elements that were block elements in
HTML 4.01 as children of p due to backwards compatibility considerations.)

This distinction is handled using a switch called nonHTMLizable. It is
defined in common.rnc as nonHTMLizable = empty which is what is
needed for XHTML5. To flip the switch for HTML5, common.rnc is in-
cluded as follows:
include "common.rnc" {

nonHTMLizable = notAllowed
}

The switch pattern is then used like this:
p.inner =

(common.inner.strict-inline
| (common.inner.struct-inline

& nonHTMLizable
)

)

When nonHTMLizable expands to notAllowed, the right-hand size of |
becomes unsatisfiable and p.inner becomes equivalent to
common.inner.strict-inline.

When nonHTMLizable expands to notAllowed, p.inner becomes
equivalent to common.inner.struct-inline because
common.inner.strict-inline is defined to be a subpattern of
common.inner.struct-inline.

5.3.3 Examples of Elements
The RELAX NG implementation for a typical element looks like this:
blockquote.elem =

element blockquote { blockquote.inner & blockquote.attrs }
blockquote.attrs =

(common.attrs

40 AN HTML5 CONFORMANCE CHECKER (DRAFT)

& blockquote.attrs.cite?
)
blockquote.attrs.cite =

attribute cite {
common.data.uri

}
blockquote.inner =

(common.inner.block)

The element is given a named definition: blockquote.elem. The defini-
tion simply expands to an element pattern for the element in question. The
content model is defined to be an interleaving of two named patterns: one
for element content (blockquote.inner) and another for attributes
(blockquote.attrs).

The named pattern for attributes is defined as the interleaving of com-
mon attributes and element-specific attributes. In this case, the only element-
specific attribute (cite) is optional, hence the ? quantifier. Next, the named
pattern (blockquote.attrs.cite) for the element-specific attribute is
defined. The datatype for the attribute refers to a common datatype
definition.

The named pattern for the element content (blockquote.inner) is
merely defined to map to the common content model for elements that ac-
cept only block children (common.inner.block).

Other elements are defined analogously. Of course, the definitions for
other elements tend to become more complex. For example, this is the defini-
tion for datetime form controls:
input.datetime.elem =

element input { input.datetime.attrs }
input.datetime.attrs =

(common.attrs
& common-form.attrs
& input.datetime.attrs.type
& common-form.attrs.accesskey?
& input.attrs.autocomplete?
& common-form.attrs.autofocus?
& input.attrs.list?
& input.datetime.attrs.min?
& input.datetime.attrs.max?
& input.attrs.step.float?
& common-form.attrs.readonly?
& input.attrs.required?

CHAPTER 5. IMPLEMENTATION 41

& input.datetime.attrs.value?
)
input.datetime.attrs.type =

attribute type {
string "datetime"

}
input.datetime.attrs.min =

attribute min {
form.data.datetime

}
input.datetime.attrs.max =

attribute max {
form.data.datetime

}
input.datetime.attrs.value =

attribute value {
form.data.datetime

}

input.elem |= input.datetime.elem

The notable detail in this more complex example is that the reference to
input.datetime.attrs.type is not quantified. Hence, the type attrib-
ute with the value datetime is required. This definition for the input ele-
ment is ORed together with the other definitions with different type attrib-
utes (input.elem |= input.datetime.elem). This means that the
value of the type attribute serves as a discriminator for determining which
patterns apply even though the name of the element remains the same.

5.4 The HTML5 Datatype Library
It was found that a custom datatype is needed in the following cases:
• When the lexical space of a datatype is not a regular language or when it

is but formulating it as a regular expression would be particularly hard
or inconvenient.

• When the lexical space of a datatype is a regular language, but the gram-
mar would require a lot of literal strings (e.g. registered language codes
or character encoding names) embedded into it.

• When checking the value requires calendar calculations.

42 AN HTML5 CONFORMANCE CHECKER (DRAFT)

5.4.1 Dates
On the surface, it would seem that the last case is unnecessary considering
that the XSD datatypes include a dateTime type that can be constrained
through its regular expression facet. However, the XSD dateTime is inap-
propriate for HTML5 in a subtle way. With the XSD type, leading and trail-
ing whitespace is discarded before the pattern is matched, so there’s no way
of forbidding surrounding whitespace. The Web Forms 2.0 date and time
types do not allow surrounding whitespace. Hence, custom types are
needed.

It turns out that discarding surrounding whitespace as part of the data-
type makes the datatype library less flexible, since any datatype that does
not allow whitespace at all (neither surrounding the meaningful value nor
inside the value) can be used in a way that allows surrounding whitespace
by wrapping it in the RELAX NG list pattern so that a single-token list of
whitespace-separated tokens results.

5.4.2 IRIs
In addition to dates, it turns out that custom types for IRIs and language tags
are also called for, even though the repertoire of XSD types includes data-
types for these.

The definition of the XSD anyURI datatype cannot be considered stable
or useful. Its definition has changed with each edition and version of the
specification. In the first edition of version 1.0 [XSDDatatypesFE], which
predated the IETF IRI specification, the definition implied that not all strings
are valid anyURI values. Indeed, the Jing implementation does not allow all
possible strings. It is unclear, though, whether the definition actually acci-
dentally allowed more than it was thought to allow. In the second edition of
version 1.0 [XSDDatatypes], which was finalized after the Jing implementa-
tion had been released, the definition suggested that different implementa-
tion levels could treat different lexical spaces valid. In a February 2006 work-
ing draft of the 1.1 version [XSDDatatypes11WD], the definition concedes
that any finite string is a valid anyURI.

For these reasons, custom data types for IRIs (only absolute) and IRI ref-
erences (either relative or absolute) were developed. The major problem
with deciding whether a string is a conforming IRI is that the generic IRI
syntax is not particularly restrictive. Instead, individual IRI schemes, such as
http, mailto and ftp, are allowed to specify their own syntax. And imple-
mentation working only on the generic IRI level would pass just about any
string as a valid IRI reference. On the other hand, it would be impossible to

CHAPTER 5. IMPLEMENTATION 43

implement scheme-specific knowledge of future or private IRI schemes.
Even implementing support for all the IANA-registered IRI schemes would
be impractical. In fact, these problems were the reason (in addition to the
XSD datatypes predating the IRI specification) for the fuzzy definition of
anyURI. Still, it would be a pity not to help authors with a scheme-specific
issues related to the most commonly used schemes—the http scheme in
particular.

The obvious solution is to implement scheme-specific checking for the
most common schemes and apply it only generic processing to the rest.
However, leaving the decision on what scheme-specific checking to support
to implementations of the abstract datatype library specification would
make implementations uninteroperable. It was decided to include scheme-
specific knowledge of the following IRI schemes: http[RFC2616],
https[RFC2818], ftp[RFC1738], mailto[RFC2368], file[RFC1738] and
data[RFC2397]. The selection of these IRI schemes was based both on which
scheme are specifically covered by the Web Forms 2.0 specification and on
which schemes are supported by the Jena IRI library around which the data-
type library puts a thin wrapper to implement IRI checking. A reasonable
candidate for including on the list would be the javascript pseudo-
scheme. Support for it would require using the Rhino JavaScript library for
syntax checking instead of using the Jena IRI library. The Jena IRI library
does not offer satisfactory support for the mailto and data schemes. Ad-
ding support for these IRI schemas was not attempted within the scope of
this thesis project but was left as possible future work (page 69).

5.4.3 Language Tags
The HTML lang attribute and the XML xml:lang attribute take as the
value a language tag identifying a human language. Until recently, language
tags were defined by [RFC3066]. Now that specification has been obsoleted
by [RFC4646] and [RFC4647]. A language tag consists hyphen-separated
subtags.

Different subtags have different lengths. Moreover, the permissible list of
values is restricted to private use subtags (starting with x-) and values that
are in the IANA subtag registry. The XSD definition for language is signi-
ficantly more coarse: the lexical space is defined to be 1–8 ASCII letters fol-
lowed by zero or more hyphen-separated subtags consisting of 1–8 ASCII
letters and/or digits.

A custom datatype with built-in datatype can do much better if it imple-
ments checking for the syntax defined in [RFC4646] and also contains data
from the IANA registry. This approach was chosen and partially

44 AN HTML5 CONFORMANCE CHECKER (DRAFT)

implemented. However, the implementation was not finished within the
scope of this thesis project.

Making the lexical space of a datatype dependent on a registry that
changes over time poses a versioning problem. However, as long as imple-
mentations document when their IANA registry snapshot was taken, intro-
ducing new language tags will not be a significant problem. Introducing
new values to the registry will expand the valid lexical space without mak-
ing any previously conforming documents non-conforming. This is in con-
trast with the IRI scheme issue. Introducing support for a previously unsup-
ported IRI scheme would narrow the valid lexical space.

5.4.4 ECMAScript Regular Expressions
Web Forms 2.0 introduces an attribute called pattern for form controls that
accept textual input. The attribute specifies a regular expression that the
value of the form control must match. Web Forms 2.0 does not define its
own regular expressions. Instead, ECMAScript regular expressions are used.
When ^(?: is prepended to the value of the pattern attribute and)$ is
appended to it, the resulting string is required to be a conforming
ECMAScript regular expression. The datatype library handles the checking
ECMAScript regular expression syntax by wrapping the regular expression
parser of Rhino.

5.5 The Schematron Schema
A Schematron schema was used where RELAX NG did not work conveni-
ently and where using custom Java code was not strictly necessary. Surpris-
ingly, the use cases for Schematron turned out to be narrower than origin-
ally expected.

5.5.1 Exclusions
While grammars are very good at enforcing parent-child relationships, they
are not good at enforcing ancestor-descendant relationships, because in the
absence of intersections and negations, some the productions would have to
“remember” what kind of ancestors of interest there have been. Suppose ele-
ment A is not allowed to have element B as a descendant. In this case, all the
elements that can occur on the ancestry path from B to A would need to
have two grammar productions: one that can be derived from the root
without an intervening A element and one that cannot. Moreover, if there

CHAPTER 5. IMPLEMENTATION 45

were more such exclusions, the number of parallel grammar productions per
each neutral element would double per each exclusion rule. Obviously, this
could be a serious maintainability problem.

Fortunately, exclusions are extremely easy to express in Schematron. The
forbidden descendant element is used as the context node for an assertion,
which then states that the context node does not have an ancestor element
that could not have the context element as its descendant.

For example, this Schematron pattern causes blockquote elements that
are descendants of header elements to be reported as errors.
<rule context="h:blockquote">

<report test="ancestor::h:header">
The blockquote element cannot appear as a
descendant of the header element.

</report>
</rule>

The Schematron wrapping of the XPath expressions is rather verbose, but
the expressions themselves are simple. The expression h:blockquote
matches the blockquote element in the XHTML namespace. (The prefix h
is bound to the XHTML namespace.) The rest of the rule is only applied if
the context expressions matches, and in that case, the blockquote element
is used as the XPath context for the second expression
ancestor::h:header. This expression matches header elements (in the
XHTML namespace) that are also ancestors of the context node. If the set of
matching nodes is non-empty, the natural-language error message is
reported.

5.5.2 Required Ancestors
Opposite to exclusions, there are also checks for required ancestors. Specific-
ally, the Web Forms 2.0 repetition model requires form inputs for moving
and removing repetition blocks to have a repetition block or a repetition
template as an ancestor.

The checks are of the following form:
<rule context='h:input[@type=move-down]'>

<assert test='ancestor::h:*[@repeat]'>
An input element of type="move-down"
must have a repetition block or a
repetition template as an ancestor.

46 AN HTML5 CONFORMANCE CHECKER (DRAFT)

</assert>
</rule>

The context matches input elements in the XHTML namespace that have an
attribute named type that has the value move-down. The assertion test
matches ancestors of the context node that are in the XHTML namespace
and have an attribute named repeat. This rule is correct for pure
(X)HTML5 documents but is not sufficient for compound documents. Sup-
port for compound documents (mixing XHTML with e.g. SVG and MathML
with the Web Forms 2.0 repetition model) was left outside the scope of this
Master’s Thesis project.

5.5.3 Referential Integrity
It turns out that RELAX NG is not good for enforcing referential integrity.
Enforcing referential integrity means checking cases where an attribute
value is required to be a reference to the ID of another element. RELAX NG
has an optional extension called RELAX NG DTD Compatibility. This exten-
sion makes it possible to check that values designated as ID references actu-
ally referred to IDs in the same document. However, that’s all it can check.
Moreover, enabling this extension places restrictions on the ambiguity of the
schema, which makes schemata harder to write in some cases. Due to the
limitations of RELAX NG DTD Compatibility, all ID-related checking was
moved away from RELAX NG. Most cases are handled in Schematron.

In Schematron, referential integrity checking builds on the XPath id()
function. The argument of the function is coerced into a string which is split
on whitespace. The return value is a node set containing the elements that
have an ID equal to any of the tokens split for the argument.

The use of the id() function has two crucial differences compared to
testing equality against the values of two attributes. First, the function oper-
ates on IDness and not on the names of attributes. Second, the argument is
split on whitespace to produce a list of tokens, so the function works for the
case where multiple IDs are referenced (IDREFs in DTD terms).

The concept of IDness is part of XML 1.0 itself. The IDness is established
by processing a DTD that declares certain attributes to have the type ID. The
DTD-based type of attributes is data that is exposed through the core SAX2
interface. More precisely, it is exposed via the getType() methods of the
Attributes interface. The XPath implementation determines which attrib-
utes should be considered to be of type ID by calling one of the getType()
methods.

CHAPTER 5. IMPLEMENTATION 47

In the case of the HTML5 serialization, there is no DTD processing what-
soever involved. The parser simply assigns IDness to the attribute named id
and exposes this through SAX.

In the case of the XML serialization (XHTML5), IDness that is not based
on DTD processing is assigned between the parser and the validation SAX
listeners. Immediately after the parser in the pipeline, there is a SAX filter
that constitutes an “xml:id processor” as per [xmlid]. Immediately after the
xml:id processor, there is a SAX filter that performs similar ID assignment
on attributes named id that are not in a namespace and belong to an ele-
ment that is in the XHTML namespace. This second filter could be called an
“XHTML id processor”.

With ID assignment performed before the Schematron stage, Schematron
can be used to check that referents are of the right kind. For example:
<rule context='h:input[@list]'>

<assert test='id(@list)/self::h:datalist or
id(@list)/self::h:select'>

The list attribute of the input element must
refer to a datalist element or to a select element.

</assert>
</rule>

5.6 The Non-Schema-Based Checkers
It turns out, as expected, that HTML5 has conformance requirements that
cannot be expressed in RELAX NG or Schematron or that would be incon-
venient to express in RELAX NG or Schematron. Checking for such require-
ments is handled by non-schema-based checkers.

Conceptually, a non-schema-based checker listens to parse events and
does whatever is necessary and computable to identify the kind of conform-
ance requirement violations that the checker is designed to handle. In prac-
tice, a non-schema-based checker is a Java class that implements the SAX2
ContentHandler interface and reports to a SAX2 ErrorHandler. Since
non-schema-based checkers are implemented in a full programming lan-
guage, they can check for any machine-checkable conformance requirement.

To make the non-schema-based checkers fit into the Jing-based architec-
ture, a wrapper class that implement the Jing Validator implemented.
With this wrapper class, the non-schema-based checkers conform to the
same interface as the schema-based validators and can be combined into the
same validation pipeline. Every non-schema-based checker is also given a

48 AN HTML5 CONFORMANCE CHECKER (DRAFT)

URI so that they can be instantiated by URI in the extended validation user
interface just like validators instantiated from schemata identified by URIs.

The organization of checks for different requirements into different non-
schema-based checkers is a matter of software design. After all, the specifica-
tion does not mandate a particular code organization. If every requirement is
implemented as a separate checker, there will be a lot of code duplication,
since many checkers need to do similar things. On the other hand, imple-
menting everything a single checker would make the code unmaintainable.
The organization below reflects the design decisions of the author.

Developing checkers to cover all of HTML5 was deemed to be out of the
scope of this thesis project. Instead, a selection of prototype checkers were
implemented as a proof of concept.

5.6.1 Table Integrity Checker
A table integrity checker was chosen as the main proof of concept non-
schema-based checker. Table integrity was deemed to be the most complex
of the requirements that call for a non-schema-based checker making it ideal
for proving by implementation that the approach works. Also, purely
schema-based validators are incapable of checking table integrity and table
integrity has notable relevance to table rendering in browsers, so table integ-
rity checking makes for a good demo.

Since the table model for (X)HTML5 was only being specified when the
checker was prototyped, the checker was speculatively based on the HTML
4.01 table model and browser behavior. The differences from HTML 4.01 are
that colspan='0' is treated as colspan='1' and that headers must
refer to th cells. The top left corner of cells is placed in the first available slot
on the row, which is browser-compatible but different from what the CSS2
specification says.

An HTML table has a Cartesian grid of slots. A cell can span multiple
slots. Subsequent cells are moved to the right until a free slot for the top left
corner of the cell is found. When cells span multiple rows, this slot allocation
policy can lead to overlapping cells.

The table integrity checker consists of 7 classes: TableChecker, Table,
RowGroup, Cell, ColumnRange, HorizontalCellComparator and
VerticalCellComparator. The TableChecker class is the non-schema-
based checker class used by other code and the rest of the classes are internal
to the checker.

TableChecker maintains a stack of Table instances. When a
startElement event for the table element is seen, a new Table instance
is pushed onto the stack. Likewise, the stack is popped upon seeing an

CHAPTER 5. IMPLEMENTATION 49

endElement event for table. The rest of table-significant events
(startElement and endElement the col, colgroup, thead, tbody,
tfoot, tr, td and th) are delegated to the Table object at the top of the
stack.

Table maintains state of where in the table markup (e.g. in table row in-
side an explicit row group like tbody) the parse currently is. The Table ob-
ject only sees table-significant parse events. If an event occurs out of the per-
mitted sequence (e.g. a cell start occurs when the state is not in a table row)
the whole subtree of misplaced elements is silently ignored at that point. Re-
porting it as an error is left to the RELAX NG validator.

Table maintains a linked list ColumnRanges. A ColumnRange repres-
ents a contiguous range of columns that has been established e.g. by the col
element but does not yet have any cells starting in the range. A
ColumnRange knows its start and end column slot indexes. In contrast to
e.g. an array of column slots, the memory usage of this data structure is pro-
portional to the number of ranges rather than the size of the ranges. There-
fore, the memory usage can be throttled by limiting the number of elements
that are processed, which can indirectly be throttled by limiting how large
documents in term of bytes are processed. A malicious content author can-
not make the checker allocate excessive amounts of memory by declaring a
column group that spans an immense number of column slots.

Table also has the responsibility of instantiating RowGroups. The
thead, tfoot and tbody elements establish explicit row groups represen-
ted as RowGroup objects. In XHTML, tr elements may occurs as children of
the table element. (In HTML, the parser infers a wrapping tbody.) This
case is treated as an implicit row group also represented by RowGroup.
Since table cells are assigned to slots on a per-row group basis in (X)HTML,
the Table only instantiates Cell objects and gives them to the current
RowGroup for slot allocation.

A Cell knows the column index where it starts and where it ends hori-
zontally. It also knows the row until which it spans vertically. RowGroup
maintains a set of cells that span more than one row and that are still in ef-
fect—that is, the first row onto which they do not span has not passed yet.
As with ColumnRanges, the data structure does not involve allocating a
two-dimensional array of slots. Therefore, the memory requirements are
bounded in proportion to the number of cell elements rather than the num-
ber of slots that cells are declared to span.

When a Cell spans more than one row, it is added to the set of Cells
that are in effect. When a row ends, Cells that are no longer in effect are
culled from the set. When a new row starts, the Cells that are in effect are
sorted according to their start column index. A new Cell on the row get its

50 AN HTML5 CONFORMANCE CHECKER (DRAFT)

top left corner assigned to the first free slot on the row. The slots occupied by
the Cells that are still in effect (i.e. span down from earlier rows) are
skipped. The RowGroup maintains the index of the current prospective slot
index and the index of the next uninspected cell still in effect as part of its
state, so the assignment of Cells to slots can progress from left to right
without having to inspect the same cell still in effect more than once per row.
If the set of Cells in effect is not empty when the row group ends, an error
is reported for each Cell still in the set. (Cells cannot span across row
groups.)

When RowGroup has allocated a Cell to particular slots, the Cell is re-
ported back to Table, so that the list of ColumnRanges without cells can be
adjusted accordingly. Since a linked list of ColumnRanges with no cells
starting in them is maintained, the possible effects are: no change, removing
a single-column range, narrowing a range by one and splitting a range. If
there are ColumnRanges left in the linked list when the table ends, the
ranges without cells starting in them are reported.

The checker emits both warnings and errors. Since the specification is
still a draft, it is too early to tell which conditions should be treated as errors
eventually. The rest will be just warnings.

The following conditions are detected:
• A table cell is overlapped by later table cell.
• A table cell overlaps an earlier table cell. (Single overlap gets reported in

both directions to show source location for both cells.)
• A table cell spans past the end of its row group.
• A row has no cells starting on it.
• The column count on a table row is greater than the column count estab-

lished by cols/colgroups.
• The column count on a table row is less than the column count estab-

lished by cols/colgroups.
• The headers attribute does not point to th elements in the same table.

(This feature was based on speculative information and will likely have
to be revisited as the specification matures.)

• A column range has no cells starting on it.
• The value of a colspan attribute exceeds 1000, which is a magic number

in Gecko (and according to comments in Gecko source, also in IE and
Opera).

• The value of a rowspan attribute exceeds 8190, which is a magic number
in Gecko.

• The column count on a table row is greater than the column count estab-
lished by the first row in the absence of cols/colgroups.

CHAPTER 5. IMPLEMENTATION 51

• The column count on a table row is less than the column count estab-
lished by the first row in the absence of cols/colgroups.

• A col element causes a span attribute to be ignored on the parent col-
group. (Conforming in HTML 4 / XHTML 1.0; non-conforming in
(X)HTML5. With (X)HTML5 there’s also a schema-level error.)

5.6.2 Checking the Text Content of Specific Elements
Some new elements in HTML5 have a special format for their text content.
The time, meter and progress elements have a specific format for their
text content. HTML5-aware user agents are required to parse the text con-
tent but the content serves as a fallback in legacy user agents. RELAX NG
makes it possible to constrain the text content of an element if the element
only has text content and no child elements. In HTML5, the elements with a
specific text content format are allowed to have child elements. Hence,
merely developing a custom datatype and using it from the RELAX NG
schema would not work exactly the right way.

To make it possible to move the text content checking to RELAX NG in
situations where custom datatype libraries are supported by non-schema-
based checkers are not and text content checking is valued higher than child
elements (for example, a Java-based RELAX NG-aware XML editor), check-
ers for the particular text content formats were implemented as classes that
implement the Datatype interface from the Java API for custom RELAX
NG datatypes. The non-schema-based checker then uses these Datatype
implementations to check the text content of particular elements.

The Java API for custom RELAX NG datatypes supports streaming re-
porting of text content to a Datatype implementation. The Datatype inter-
face has a method called createStreamingValidator which returns an
object that implements an interface called
DatatypeStreamingValidator. Character data can be reported to a
DatatypeStreamingValidator in chunks the same way as the SAX in-
terface handles reporting of character data. The non-schema-based checker
simply maintains a stack of active DatatypeStreamingValidators and
reports the SAX character data to every DatatypeStreamingValidator
on the stack.

The instantiation rules for the DatatypeStreamingValidators are
hard-coded although the non-schema-based checker could in theory be gen-
eralized to accept parameters from the outside stating which elements re-
quire which Datatype to be instantiated an the corresponding
DatatypeStreamingValidator to be pushed onto the stack. However,

52 AN HTML5 CONFORMANCE CHECKER (DRAFT)

hard-coding these rules was simple and quite sufficient to meet the object-
ives of this project.

When a DatatypeStreamingValidator on the stack is about to be
popped—that is, the end of the element is seen—the
DatatypeStreamingValidator is queried whether it accepts the repor-
ted content or not. If it does not accept the reported content, the non-
schema-based checker reports an error.

5.6.3 Checking for Significant Inline Content
HTML5 introduces a concept of significant inline content. Significant inline
content consists of embedded content (such as an img element) or significant
text. Significant text is defined to be text that contains any character that is
not in the Unicode categories Zs, Zl, Zp, Cc and Cf.

HTML 4.01 stated: “We discourage authors from using empty P ele-
ments. User agents should ignore empty P elements.” As a result, markup
generators started to generate paragraphs containing a single NO-BREAK
SPACE. In HTML5, a NO-BREAK SPACE does not count as significant text,
since it belong in the Unicode category Zs. I believe this kind of conformance
definition and workaround arms race is not productive. However, since the
requirement was in the specification draft, a checker was developed. This
non-schema-based checker is an example of a simple checker. Having also
makes it possible to test the requirement of significant inline content with
existing Web pages to see how realistic the requirement is.

The implementation of the checker is very simple. There is a stack corres-
ponding to open elements. The information of which element have already
had significant inline content is maintained on the stack. Starts of elements
that constitute embedded content cause the current stack nodes to be
marked to have significant inline content. Character data is looped over and
each character is tested against an ICU4J UnicodeSet that represents the
characters in the above-mentioned Unicode categories. For forward-
compatibility, the checking supports supplementary planes, even though as
of Unicode 5.0 all the characters in the Unicode categories that do not count
as significant text are all on the Basic Multilingual Plane of Unicode.

The checker for significant inline content demonstrates that non-schema-
based checkers for particular requirements can be very simple and
straight-forward.

CHAPTER 5. IMPLEMENTATION 53

5.6.4 Unicode Normalization Checking
In order to develop a prototype checker for a potential requirement that
needs checking not only in the validation pipeline but also in the parser,
checking for Unicode normalization was prototyped.

[CharmodNorm] is still in the Working Draft state. Nonetheless, a check-
ing for compliance was prototyped as if [CharmodNorm] was a normative
part of (X)HTML5. This way, the feasibility of the requirements of [Char-
modNorm] could be evaluated in practice and checks with parser-level im-
pact could be prototyped.

5.6.4.1 Requirements
The definition for Fully-normalized Text involves checking normalization
before and after parsing. That is, the source text is required to be in Unicode
Normalization Form C and after parsing the “constructs” parsed out of the
source are required to be in Unicode Normalization Form C and are re-
quired not to start with a “composing character” (which is not exactly the
same as a “combining character” in Unicode).

In order to integrate normalization checking of the unparsed character
stream into Ælfred2, special-case decoding for US-ASCII, ISO-8859-1, UTF-8,
UTF-16 and UTF-32 was removed and all character decoding was unified to
use the java.nio.charset framework.

The definition involves peeking underneath the parser, which might be
considered a violation of abstraction layers. However, the requirement of
checking the unparsed source text does have the benefit that if the source is
in Unicode Normalization for C, the document cannot be accidentally
broken by editing it in a normalizing text editor.

5.6.4.2 Interpretation
[CharmodNorm] does not define what “constructs” are in the context of
XML 1.0 or HTML5. However, XML 1.1 does define what “relevant con-
structs” are, so that definition might be generalizable to XML 1.0 and
HTML5. Unfortunately, XML 1.1 defines relevant constructs in terms of the
grammar productions of XML itself instead of the significant information
items that an XML processor reports to the application. As a result, the XML
1.1 definition is not particularly useful in practice.

Since XML 1.0 and HTML5 do not have a definition for “constructs”, a
definition that makes sense was devised for the purpose of prototyping. Ca-
nonical XML and the SAX2 ContentHandler interface were used as

54 AN HTML5 CONFORMANCE CHECKER (DRAFT)

http://www.w3.org/TR/charmod-norm/#sec-FullyNormalized
http://java.sun.com/j2se/1.4.2/docs/api/java/nio/charset/package-summary.html
http://www.w3.org/TR/2006/REC-xml11-20060816/#dt-relconst
http://www.w3.org/TR/2006/REC-xml11-20060816/#dt-relconst

indicators of what the meaningful constructs in XML are once the differ-
ences in syntactic sugar are out of the way.

This gave the following definition of constructs:
• Local names of elements
• Local names of attributes
• Attribute values
• Declared namespace prefixes
• Declared namespace URIs
• Processing instruction targets
• Processing instruction data
• Concatenations of consecutive character data between element boundar-

ies and processing instructions ignoring comments and CDATA section
boundaries.

5.6.4.3 Implementation
As with the checker for significant inline content, the implementation turns
out to be rather simple. The checker outsources most work to ICU4J. An
ICU4J UnicodeSet is used for testing whether a character is a composing
character. The ICU4J Normalizer class is used for testing Unicode
normalization.

Constructs that are exposed as Java Strings in the SAX API a very
simple to check. The first character is checked against the above-mentioned
UnicodeSet and the whole string is passed to the Normalizer for normal-
ization checking.

Character data, however, is checked in a piecewise manner. Most com-
plexity in the checker is due to trying to avoid buffering as much as possible
while still using the ICU4J API unmodified. Also, dealing with the halves of
a surrogate pair falling into different UTF-16 code unit buffers causes com-
plexity by roughly doubling the lines of code compared to an implementa-
tion that was not supplementary plane-aware.

The checker tries to check as much character data as possible by passing
runs of the SAX-provided buffer to ICU4J. However, normalization-sensitive
data may continue over the buffer boundary, so the checker copies poten-
tially normalization-sensitive data near the buffer boundaries to its internal
buffer which it later passes to ICU4J. The ability to test for composing char-
acters is used for finding safe points for slicing buffers. By definition, it is al-
ways safe to slice buffers so that in piecewise normalization checking each
buffer slice being tested starts with a character that is not a composing
character.

CHAPTER 5. IMPLEMENTATION 55

Unfortunately, the column and line numbers reported on errors are very
inaccurate due to buffering. Due to the design of the SAX API, accurate
column and line positions are unavailable within a particular buffer of char-
acter data.

The normalization checking of the source text is performed by making
the parsers (both the HTML parser and the XML parser) instantiate the
checker on the parser level. As a side effect of reading from the decoded
character stream, each buffer of UTF-16 code units is passed to the checker
the way SAX character data would. The checker has a mode flag for this us-
age so that the error messages make sense.

5.7 The HTML Parser
The fundamental idea underlying the text/html support of the conform-
ance checker is that HTML5 can be treated as an alternative infoset serializa-
tion for a subset of possible XML infosets, so an HTML5 parser can appear to
the XML tooling as an XML parser parsing XHTML5. That is, the HTML5
parser needs to emit SAX parse events as if it was parsing an equivalent
XHTML5 document.

This approach was inspired by John Cowan’s TagSoup. TagSoup itself
was deemed unsuitable for this project, however. TagSoup is designed to
perform fix-up on horribly malformed markup and to never report a parse
error of any kind. A parser must report low-level errors and preserve high-
level errors to be suitable for conformance checking. Preserving high-level
errors means that the kind of errors that the RELAX NG layer, the Schemat-
ron layer and the non-schema checkers are designed to find are not hidden.
Tokenization errors are low-level errors that need to be reported on the pars-
er level.

After inspecting the TagSoup code base, it was deemed easier and less
conflicting with the goal of the TagSoup project to develop a parser specific-
ally for HTML5 conformance checking. An experimental special-purpose
parser was developed speculatively before the HTML5 parsing algorithm
draft was published.

The parser consists of a tokenizer that emits SAX events and SAX filters
that add endElement events for empty elements and perform tag inference
for optional tags. The tokenizer emits startElement and endElement
events for start tags and end tags, respectively. As a result, the SAX events
emitted by the tokenizer may violate the SAX API contract. The empty ele-
ment filter adds an endElement event for every startElement event be-
longing to an element that does not have an end tag in HTML. The tag

56 AN HTML5 CONFORMANCE CHECKER (DRAFT)

inference filter adds startElement and endElement events where HTML
4.01 Strict would allow tags to be omitted. In most cases the optional tags are
end tags and start tags that imply the end tag can be enumerated in a simple
lookup table. For implicit start tags, case-by-case checks are used.

Since the parser was developed before the HTML5 parsing algorithm
was specified, it did not make sense to implement error recovery. Instead,
the parser treats most tokenization errors as fatal. Also, by design the parser
is not concerned with nesting errors that are known to be caught on the
RELAX NG level even though normal HTML parser have to deal with issues
like block elements as children of inline elements on the parser level.

There are some minor problems related to mapping HTML5 to XHTML5.
XHTML5 does not allow the character encoding to be declared using the
meta element. The parser simply does not report the meta element to the
validation layer in that case in order to avoid schema differences for HTML5
and XHTML5 on that point. Likewise, the base element is not reported to
the validation layer. XML places rather arbitrary restrictions the characters
that are permitted in element and attribute names. Fortunately, these restric-
tions are not a problem for conforming HTML5 documents. Unfortunately,
XML also restricts the characters permitted in content more strictly than
HTML5 does. For example, HTML5 allows the form feed character. In the
current implementation, the XML restrictions apply. This issue needs to be
addressed if HTML5 continues to allow control characters that XML does
not. Finally, the permitted contents of comments differ in a subtly way
between XML and HTML5, but this is not a problem, because the parser
does not report comments to the validation layer.

The version of the parser that was implemented sufficiently demon-
strates the feasibility of the chosen approach for the purpose of this master’s
thesis. Modifying the parser to implement the HTML5 parsing algorithm
was deemed to be out of the scope of the thesis project and is discussed as
possible future work.

5.8 Character Model Checking
[WebForms2] requires documents to conform to [Charmod]. Therefore,
checking for the conformance requirements that [Charmod] places on con-
tent was investigated.

Since the requirements of [Charmod] deal with issues related to character
encoding, it turns out that the best opportunity for checking whether a docu-
ment conforms to [Charmod] is in the parser. Hence, the checks were imple-
mented in the parsers and not in the validation pipeline.

CHAPTER 5. IMPLEMENTATION 57

update-parser

It turned out that some of the requirements were not machine-checkable
and, thus, had to be omitted. For example, the requirement “Specifications,
software and content MUST NOT require or depend on a one-to-one corres-
pondence between characters and the sounds of a language.” is not
machine-checkable, because the checking software cannot tell what the au-
thor expects of correspondence to sounds and if the expectation is relied
upon.

Many requirements deal with the identification of the character encoding
and the use of preferred IANA-registered names. These checks were imple-
mented as part of the code that sets up the input stream decoding in the
parsers.

It turned out that in addition to the requirements related to identifying
the character encoding, there were only three other machine-checkable re-
quirements. However, all three are problematic in terms of reporting errors.

The requirement “Publicly interchanged content SHOULD NOT use
codepoints in the private use area.” was deemed worth a warning (only once
per document), because human judgment is needed in order to decide when
the private use area is used in a legitimate way—e.g. to encode scripts that
have not yet been assigned official Unicode code points or that will not in-
cluded in Unicode as a matter of policy (such as Tengwar or Klingon which
have been constructed to support particular works of fiction). Moreover, an-
other requirement in [Charmod] denies denying the use of the private use
area.

Two requirements were ignored as too impractical when considered in
the light on real-world HTML authoring practice.

The first ignored requirement reads: “Escapes SHOULD only be used
when the characters to be expressed are not directly representable in the
format or the character encoding of the document, or when the visual rep-
resentation of the character is unclear.” The second one is: “Content
SHOULD use the hexadecimal form of character escapes rather than the
decimal form when there are both.”

Using the five predefined entities in XML, using the HTML5 entities
from the specification or using numeric characters references is harmless
when it comes to the parsed document tree. In XML decimal in hexadecimal
character references work equally well. In HTML, the decimal form actually
works better in very old browsers. Enforcing these requirement would mean
proclaiming a prevalent authoring practice non-conforming on the grounds
of the aesthetic preferences of the authors of [Charmod]. Moreover, [Char-
mod] does not give a solid machine-checkable definition for characters
whose visual representation is unclear.

58 AN HTML5 CONFORMANCE CHECKER (DRAFT)

5.9 The Front End
The conformance checker needs a user interface. The user interface should it-
self be conforming. To meet this goal, the user interface is generated using a
SAX pipeline. The output markup is produced by a SAX serializer that pro-
duces HTML5 markup from SAX events representing an XHTML5 docu-
ment. Hence, the approach taken with output is the reverse of the approach
taken with HTML5 input.

This method of producing markup was chosen, because isolating the
markup text generation in a single serializer class makes it easier to get
markup generation right compared to more traditional methods where snip-
pets of markup text are generated ad hoc in multiple places in the program.
In particular, using an isolated serializer eliminates a whole class of markup
generation problems: forgetting to escape markup-significant characters or
accidentally escaping them twice. [ProducingXML]

All parts of the conformance checker report to a SAX ErrorHandler.
The ErrorHandler implementation that is used emits SAX events for the
error messages formatted as XHTML list items. There is no intermediate
data model. The XHTML list items are streamed out as the back end pro-
gresses on processing the input document.

Expressing an XML document by writing Java method calls is not as con-
venient as writing tags. To avoid hand-coding large unchanging parts of the
user interface markup as Java method calls, a code generator called SaxCom-
piler was developed [SaxCompiler]. SaxCompiler is a SAX
ContentHandler that produces Java source for a class that will call the
ContentHandler methods in the same sequence as the methods of
SaxCompiler itself were called. That is, the resulting class plays back SAX
method calls recorded from a real XML parse. SaxCompiler supports the in-
sertion of method call back to the application that uses the generated classes
and supports recoding XML fragments.

The front end is a rather straight-forward Java servlet that handles form
input, runs the back end code and produces output using a SAX pipeline as
described above. Since the ErrorHandler implementation writes to the
output SAX pipeline, the view and the controller are effectively conflated.
There is no need for a separate data model, as the front end is only a thing
wrapper for the back end code.

CHAPTER 5. IMPLEMENTATION 59

Chapter 6

Shortcomings

The developed service has some shortcomings. The real shortcomings per-
tain to error messages. The less important shortcomings pertain to the soft-
ware not being quite as efficient in terms of performance as it could theoret-
ically be.

6.1 Non-Ideal Error Messages
The foremost shortcoming of the conformance checker is the lack of useful
detail in the error messages emitted upon violations of the RELAX NG
schema. This problem was anticipated before starting the project. Also, the
users of development versions have identified the messages generated by
the Jing validation engine as a notable problem.

Jing has a handful of different messages for RELAX NG validation fail-
ures. They are all very terse. For example: “Element name not allowed in this
context.”, “Attribute name not allowed at this point; ignored.” and “Bad
value for attribute name.” The error messages are always correct, but they do
not help the user understand why something went wrong.

Moreover, since the error messages do not show the erroneous markup,
it is unnecessarily hard for the user to see where the problem is.

6.1.1 Bimorphic Content Models
When the permissibility of an element depends on something more complex
than the parent element, the error messages may confuse the user. For ex-
ample, some elements take either inline or block children but not both.
Moreover, in HTML 4.01 Transitional these elements were generally allowed
to take a mix of inline and block children. Consider this fragment:

61

<div>foo<p>bar</p></div>

When the validation engine sees the p element, it has already committed to a
derivation in the grammar that allows em as a child of div. That derivation
is the inline branch of the bimorphic content model. Hence, the p element is
not allowed in the derivation and the validation simply states that the ele-
ment p is not allowed there. This may be confusing, because div does allow
p children in other situations. A better error message would state that div
only takes either inline or block children.

One way of addressing this problem would be allowing a mix of inline
and block children in the schema and using a non-schema-based checker for
detecting and reporting the mixed use of inline and block content as children
of elements that have a bimorphic content model.

6.1.2 Lack of Datatype Diagnostics
When the value of an attribute is not permissible according to the datatype
of the attribute, the validation engine emits a message simply stating that the
attribute had a “bad” value. No hint is given on why the value is bad.

The RELAX NG datatype API allows a datatype implementation to com-
municate diagnostic messages to the validation engine in exception mes-
sages. However, Jing does not expose these messages to the user. In theory,
an ambiguous grammar could cause the validation engine to test a single at-
tribute value against multiple datatypes, so there would not be a single dia-
gnostic message. However, in practice with many schemata it would be
quite helpful to provide the diagnostic message from at least one (usually
the only) datatype that did not accept the value.

Even if diagnostic information was reported, there would be a further
complication. In many cases the datatype is defined using a regular expres-
sion. If the regular expression does not match, there is no useful natural-
language explanation available.

6.2 Poor Localizability
Although the conformance checker is carefully internationalized in the sense
that it correctly handles input documents in any language and supports sup-
plementary characters in addition to the Basic Multilingual Plane of
Unicode, the messages the conformance checker reports are available in Eng-
lish only and there is no mechanism in place for supporting other languages.

There are a number of problems related to the translatability of the mes-
sages emitted by the software. Various libraries are used, so the ways in

62 AN HTML5 CONFORMANCE CHECKER (DRAFT)

which messages originate is not unified (except that all libraries emit
English-language messages by default). Some libraries have no localization
facilities whatsoever. Other libraries do have localization mechanisms but
the mechanisms assume that the user interface language is a property of the
entire Java process and discovered from the environment of the process.
However, this assumption does not hold for Web applications. The locale of
the server in uninteresting and instead Web applications should be able to
vary the user interface language on a per-HTTP response basis. In addition
to these problems, the Schematron schema contains messages that are ex-
posed to the end user.

Instead of modifying the libraries themselves, an alternative approach to
localization would be reverse templating. The English messages would be
matched against known patterns that would allow the variable parts to be
extracted. The variable parts could then be plugged into a translated mes-
sage corresponding to the matched pattern.

In order to focus on HTML5 conformance checking instead of solving the
translatability problems discussed above, translatability of the user interface
was left out of the scope of this project. Moreover, other validation services
whose developers have borne the burden of making the software localizable
have not been met with notable enthusiasm to actually produce translations.

6.3 Opportunities for Optimization
Some shortcomings relate to the implementation not being as efficient in
terms of performance as theoretically possible. These shortcomings are not
necessarily practical problems and the achievable improvements may not be
worth the effort that would be required.

6.3.1 RELAX NG
The Jing RELAX NG engine took its current form 2003. Back then, it was de-
signed to be compatible with Java 1.1. Dropping support for Java 1.1 opens
up opportunities for performance optimization is by replacing thread-safe
classes with classes that perform the same tasks but do not use thread syn-
chronization features.

When Java 1.0 and 1.1 were designed, all the classes in the standard lib-
rary were made thread-safe as a matter policy. In retrospect, this has turned
out to be a bad policy. Often, a given object is only accessed from one thread,
which makes synchronized monitor entry and exit useless. When an object is
shared between the threads, it is likely that more than one standard class

CHAPTER 6. SHORTCOMINGS 63

library object need to be mutated in an atomic operation, which means the
application means to manage the synchronization anyway. Even with mod-
ern virtual machine designs that can make monitors biased towards one
thread so that access from that thread does not actually cause real inter-
thread synchronization, class implementations that do not use useless syn-
chronization perform better in scenarios where thread-safety is not
necessary.

For compatibility with Java 1.1, Jing uses the Hashtable class instead of
the HashMap class introduced in Java 1.2. Profiling the conformance checker
with the NetBeans profiler shows that Hashtable$Entry is the second
most common object (after char[]) in the memory allocation statistics in
terms of number of live objects of a given type. While this statistics does not
indicate how often the methods of Hashtable are called, it is still reason-
able to expect the Hashtable class to be used a lot. Therefore, replacing oc-
currences of the Hashtable class with the API-compatible non-
synchronized HashMap class would likely make RELAX NG validation is
slightly faster.

The two other typical candidates for replacement with non-synchronized
counterparts are the Vector class and the StringBuffer class. They could
be replaced with ArrayList (introduced in Java 1.2) and StringBuilder
(introduced in Java 5), respectively. Even though the instances of these
classes are not as common as instances of Hashtable and
Hashtable$Entry, it would make sense to use the non-synchronized
counterparts in these cases as well.

6.3.2 Schematron
The Schematron implementation in Jing is based on XSLT. This is natural,
considering that Schematron has been designed to be easily implementable
as an XSLT transformation on the document being validated. Inside the
transformer, the tree is built from the SAX parse events. The Schematron as-
sertions fire when the entire document has been reported to the XSLT
transformer.

Also, Jing creates a short-lived helper thread that sleeps when the main
thread runs for fitting together API calls whose blocking behavior makes it
impossible to use them from one thread. The helper thread pretends to call
in to an XML parser and then blocks unblocking the main thread and allow-
ing the parse events from the main thread to be reported as if coming from
the XML parser the that the helper thread pretended to call.

The implementation approach has many points where it could be
improved.

64 AN HTML5 CONFORMANCE CHECKER (DRAFT)

First, the helper thread can be eliminated by using an API that exposes
the XSLT engine as a SAX ContentHandler instead of insisting on the the
XSLT engine initiating the parse. This approach was prototyped and, in-
deed, it was possible to eliminate the helper thread and the overhead associ-
ated with creating and destroying it. Cursory testing locally without net-
work suggested that this improved the throughput (number of requests per
unit of time) of the system by about 1%, but due to the variation between
test runs the figure should be considered inaccurate.

Second, even though Schematron is designed to be implementable in
XSLT, running an XSLT transformation on a full XSLT implementation is
more complex than what would be minimally required to implement
Schematron. The XSLT transformation spends time creating a report docu-
ment which is then converted to calls to the SAX ErrorHandler. A Schemat-
ron implementation without XSLT could run XPath on a tree model and pro-
duce error messages as necessary without creating report document.

Third, Schematron implemented by running XPath expressions on a full
document tree causes all the messages to appear after the entire document
has been parsed and the tree built. In some cases, messages could logically
be triggered much sooner. For example, in the case of exclusions as soon as
an element is seen with a forbidden parent on the stack of open elements, an
error message could be produced. In theory, a streaming XPath matcher
could both produce errors so little in the parse and consume less memory.
However, implementing such a streaming matcher for this project in particu-
lar would have been (and still would be) too great a distraction from the
main goals of the project. If a streaming Schematron implementation was
available off-the-shelf, using it would be worthwhile.

Fourth, the project ended up using Schematron only for two simple
things: exclusions and referential integrity checking. For just these two pur-
poses, Schematron in general and XSLT-based Schematron in particular is
unnecessarily heavy. An extremely simple hand-crafted non-schema checker
could replace the Schematron part of the system. A rough estimate based on
the bench marking the throughput of the system with and without Schemat-
ron part suggests that the throughput of the system could increase by about
5% if the Schematron part was replaced with a hand-crafted non-schema
checker. Moreover, such a checker would make it extremely easy to emit er-
rors related to exclusions as soon as logically possible.

In summary, the best way to optimize the performance of the Schemat-
ron part would be to treat it as a rapid prototype and replace it with hand-
crafted code once the HTML5 language requirements have stabilized and
there is less need for the conformance checker to be easily modifiable.

CHAPTER 6. SHORTCOMINGS 65

Chapter 7

Applicability in Other Contexts

7.1 RELAX NG-Guided Autocompletion in
Editors
Early on in the project it was assumed that the RELAX NG schema would be
directly usable in it RELAX NG-aware XML editors for guiding the auto-
completion. RELAX NG-aware editors include nxml-mode for Emacs, oXy-
gen XML and Etna. Unfortunately, during the course of the project it became
apparent that in some cases RELAX NG could in theory express a constraint,
but expressing it in Schematron or in custom code would be easier and
would provide better error messages. Exclusions of the foremost class of
constraints for which this is the case. Moreover, the use of a custom datatype
library makes the schema less portable.

If RELAX NG could combine pattern with intersection and negation op-
erators, writing a schema for auto-completion would be easier. However, it
would not solve the problem that it would be hard for a generic RELAX NG
validator to generate better error messages for exclusions than what hand-
crafted messages in Schematron can provide trivially.

7.2 Content Management Systems
Many content management systems in use today do not properly checked
the input they accept. This leads to a situation commonly referred to as
garbage in garbage out. The content management systems serve erroneous
markup if erroneous markup has been entered into the system. The back end
of the conformance checker implemented in this project could be used in
content management systems to check input.

67

Content management systems written in Java could easily integrate the
back end of the conformance checker. However, to support other program-
ming languages the conformance checker would need to expose a remote in-
terface that could be used from other programming languages with minimal
client code. In practice, it would make sense to implement such an interface
as a Web service following the REST architectural style.

68 AN HTML5 CONFORMANCE CHECKER (DRAFT)

Chapter 8

Future Work

Developing a full HTML5 conformance checker is too broad a task for a mas-
ter’s thesis project. For this reason, the software was developed to a point
where the feasibility of implementation is demonstrated in all areas but
every area was not pushed to completion.

8.1 Open Up
Even though the software developed in this project is Free Software / Open
Source, it has not been developed in a way that would make it easily ap-
proachable to potential contributors. Perhaps the most pressing need for a
change in order to move the software forward after the completion of this
thesis is moving the software to a public version control system and making
building and deploying the software easy.

8.2 The HTML5 Parsing Algorithm
The HTML parser was implemented speculatively before the HTML5 pars-
ing algorithm had been defined. The parser needs to be revised to imple-
ment the HTML5 parsing algorithm.

The parser is designed for the SAX API, which is a streaming API. The
HTML5 parsing algorithm has error recovery features that requires the pars-
er to mutate parts of the parse tree that have already been built in earlier
stages of the parse. This is incompatible with SAX. In order not to comprom-
ise streamability, the revised parser would have to treat errors that require
SAX-incompatible recovery as fatal errors. This is allowed by the
specification.

69

To make the parser reusable as a general-purpose HTML5 for other Java
programs, it would be desirable to also implement the full HTML5 parsing
algorithm including the SAX-incompatible parts. This would require a tree
building layer as an alternative to the tag inference filter that does not build
a tree. There could be an interface for pluggable tree builders. Tree builders
could be provided for DOM, XOM and a special-purpose tree designed for
efficient SAX event replay. A tree designed for SAX replay could store attrib-
utes as objects implementing the SAX Attributes interface and could
store character data in char arrays as opposed to Strings.

A preliminary review of the HTML5 parsing algorithm indicates that
tokenizer would not need to be completely rewritten even though the token-
izer maintains its state implicitly in the runtime stack and the HTML5 pars-
ing algorithm maintains state explicitly and on the first sight appears to al-
low state transitions that do not appear to correspond to normal returns on
the runtime stack. However, on a closer inspection the abnormal state trans-
itions are always abrupt returns to the main loop and could be implemented
as an exception caught in the main loop.

8.3 Tracking the Specification
Since the conformance checker and HTML5 itself have been developed in
parallel, the conformance checker has been almost constantly more or less
out of sync with the specification. Ideally, future development should track
the specification on a near-daily basis instead of major synchronization work
every few months.

Moreover, during the work on this project, various small issues with no
clear answer in the specification were discovered. Once the issues are clari-
fied in the specification, the software needs to be updated accordingly.

8.4 RELAX NG Message Improvements
The foremost problem with the RELAX NG-based approach to HTML5 con-
formance checking is that the error messages that a generic validator can
realistically generate cannot be as good as messages written by a human for
specific situations. Moreover, the actual messages emitted by Jing are not as
good as they could be.

The first potential improvement is exposing the diagnostic messages
from datatype libraries to the end user. Another relatively simple improve-
ment would be mentioning the parent element of whatever element is

70 AN HTML5 CONFORMANCE CHECKER (DRAFT)

deemed to be forbidden in a given context. With RELAX NG, the parent is
not sufficient for explaining the situation, but with HTML5 it usually is. No
assessment was made to determine the feasibility of these changes, but the
changes do seem simple.

If the validation engine reported the misplaced element and its parent, an
HTML5-aware error message decorator could add natural-language descrip-
tions about the content model of the parent and the allowed contexts of the
child.

A more involved change would involve giving a hint of what kind of ele-
ments would have been allowed in place of the element that was not al-
lowed. Even if querying the schema in this way was possible to add to Jing,
there would be additional complication that RELAX NG-based expectations
could still be wrong according to e.g. exclusions expressed in Schematron.
For this reason, it may be better to focus on the first two improvement ideas.

8.5 More Non-Schema-Based Checkers
The table integrity checker was the most complex non-schema-based checker
that is needed. Therefore, there is not work of comparable complexity left to
be implemented. However, in terms of quantity, there are many simple and
small requirements scattered around [WebApps] and [WebForms2] that
need to be addressed using non-schema-based checkers or alternatively, in
some cases, Schematron. Making sure that all these requirements have been
identified, writing test cases for the requirements and implementing check-
ing for each requirement may well end up being more time consuming that
the development of the table integrity checker.

Identifying all these requirements requires particular attention, as the re-
quirements are scattered around the specifications and many times only get
a brief mention in passing. The following were identified as unimplemented
features requiring non-RELAX NG checking:
• Emit a warning if there is no selected radio button in a radio button

group.
• Emit an error if there are more than one radio button selected in a radio

button group.
• Emit an error if a form field name starts with Ecom_ and the name is not

listed in [RFC3106].
• Emit an error if a form attribute is non-empty but does not point to a

form element by ID.

CHAPTER 8. FUTURE WORK 71

• Emit an error if a label element has more than one form control des-
cendant or if a label element has the for attribute and a form control as
a descendant.

• Emit an error if the form submission method is get, the form is desig-
nated to submit to an http URI and the accept-charset attribute des-
ignates an encoding other than US-ASCII or UTF-8.

• Emit a warning if the accept-charset attribute is used on a form ele-
ment the uses the XML submission format.

• Emit an error if there are non-unique term definitions using the dfn
element.

• Emit an error if there is an abbr element that has neither a title attrib-
ute nor a corresponding dfn element.

• Emit an error if the attribute values on the meter element do not satisfy
the expected inequalities.

• Emit an error if the value of the value attribute on the progress ele-
ment is greater than the value of the max attribute.

• Emit an error if IDs are not unique.
• Support checking for rel and class attribute values in a way that up-

dates the registered permissible values from an external service
dynamically.

Of the features listed above, the last one will likely take the most effort to
implement.

A relatively complex component similar to a non-schema-based checker
is needed for showing the document outline. However, strictly speaking,
such a component would not be checking machine-checkable conformance
requirements and, therefore, is not included in the list above.

8.6 Assistance for Checking Human-Checkable
Requirements
The conformance checker is unable to check for conformance requirements
that require human judgment. However, the conformance checker could
make it easier for human users to check such requirements.

For example, a machine cannot check if the document outline produced
by the HTML5 outline algorithm makes sense. However, a machine could
generate the outline and show it to the human user for review.

72 AN HTML5 CONFORMANCE CHECKER (DRAFT)

8.7 Web Service

8.8 Embedded MathML and SVG
Browsers from the vendors involved with the WHATWG

8.9 Showing the Erroneous Source Markup
The error messages give the line and column for errors, but the output does
not show the actual erroneous part of the source markup. This makes it
harder to see where the problems are.

Future development could include a class for collecting the character-
decoded and line-identified source code. This would require changes to both
the HTML and XML parsers. The parsers would need to report the unparsed
source to a data holder class at the point where the byte stream has already
been decoded to UTF-16 and the line boundaries have been identified.

The data holder class could be used for extracting markup snippets cor-
responding to each message. Also, the data could be used for formatting the
entire source markup in the conformance checker output in a way that al-
lowed linking to the points that involve errors.

CHAPTER 8. FUTURE WORK 73

Chapter 9

Conclusions

In this thesis the implementation of an HTML5 conformance checker was ex-
amined. The conformance checker was built around a RELAX NG validator.

The prior expectation related to the expressiveness of RELAX NG was
that RELAX NG alone would not be sufficient but would have to be aug-
mented with Schematron and hand-crafted custom code. Also, it was expec-
ted that the convenience of using RELAX NG would have the cost of making
error messages worse than what they could be if they were hand-crafted a
case-by-case basis.

The prior expectation related to the text/html serialization of HTML5
was that it could be treated as an alternative infoset serialization for a subset
of possible XML infosets and, therefore, XML tools would be applicable if
the parser for text/html exposed the result of the parse in a way an XML
parser would expose the result of parsing an equivalent XML document.

It was found, through implementation experience, that these prior ex-
pectations were correct.

It was expected that it would make sense to express as RELAX NG virtu-
ally all the HTML5 conformance requirements that would be possible to ex-
press as RELAX NG. This expectation turned out to be incorrect. It turned
out that especially in cases of exclusions implementation using Schematron
(or custom Java code) was by far easier than expressing the exclusions in the
RELAX NG grammar. Moreover, expressing exclusions in Schematron (or
custom Java code) also made it possible to give more sensible error messages
then what a RELAX NG validator would give if the exclusions were woven
into the RELAX NG grammar.

It would be fair to say that for purposes of validation, when Schematron
(or hand-crafted code) can be used alongside RELAX NG, RELAX NG
should be used for expressing the general rules and Schematron should be
used for expression the exceptions to the general rules. Trying to factor the

75

exceptions to the general rules into the RELAX NG schema is bad both for
schema maintainability and for the error messages that are generated. That
is, the full formal power of RELAX NG cannot be put to use, because the
generation of useful error messages cannot keep up.

This has reusability implications for the RELAX NG schema. Since the
Schematron schema and the custom Java code do not just improve on things
that RELAX NG cannot express, using the RELAX NG schema alone in, for
example, and editing system that only supports RELAX NG would mean
losing some exclusion features that theoretically could be expressed in
RELAX NG. Therefore, in such cases it may be worth while to use code gen-
eration together with the schema from this project to produce a schema that
incorporates the exclusions in RELAX NG.

Moreover, it was unexpected that the Schematron part turned out to be
constrained to exclusions and referential integrity checking. Indeed, thinking
of the Schematron part as a rapid prototype of a certain kind of a non-
schema checker came relatively late in the project.

Even though the applicability of schema languages was overestimated
before the project, the overall hybrid implementation approach worked out
fine.

76 AN HTML5 CONFORMANCE CHECKER (DRAFT)

References

[Cascading]
Cascading Style Sheets. Håkon Wium Lie. PhD thesis, University of Oslo,
2005.
http://people.opera.com/howcome/2006/phd/ (referenced: 2007-02-26)

[cdf-ws-minutes2]
W3C Workshop on Web Applications and Compound Documents (Day 2) Jun 2,
2004. Leigh Klotz, editor. W3C, 2004.
http://www.w3.org/2004/04/webapps-cdf-ws/minutes-20040602.html
(referenced: 2006-10-18)

[Charmod]
Character Model for the World Wide Web 1.0: Fundamentals. Martin J. Dürst,
François Yergeau, Richard Ishida, Misha Wolf and Tex Texin, editors.
W3C, 2005.
http://www.w3.org/TR/2005/REC-charmod-20050215/

[CharmodNorm]
Character Model for the World Wide Web 1.0: Normalization, working draft.
François Yergeau, Martin J. Dürst, Richard Ishida, Addison Phillips,
Misha Wolf and Tex Texin, editors. W3C, 2005.
http://www.w3.org/TR/2005/WD-charmod-norm-20051027/

[Compact]
RELAX NG Compact Syntax. James Clark, editor. OASIS, 2002.
http://relaxng.org/compact-20021121.html

[CompactXSD]
A Compact Syntax for XML Schema. Kilian Stillhard. Master’s thesis, Swiss
Federal Institute of Technology Zurich, 2003.
http://dret.net/netdret/docs/da-ws2002-stillhard.pdf

[DatatypeAPI]
RELAX NG Datatype Interface. James Clark and Kohsuke Kawaguchi.
http://relaxng.sourceforge.net/datatype/java/apiDocs/

77

http://people.opera.com/howcome/2006/phd/
http://people.opera.com/howcome/2006/phd/
http://www.w3.org/2004/04/webapps-cdf-ws/minutes-20040602.html
http://www.w3.org/2004/04/webapps-cdf-ws/minutes-20040602.html
http://www.w3.org/2004/04/webapps-cdf-ws/minutes-20040602.html
http://www.w3.org/TR/2005/REC-charmod-20050215/
http://www.w3.org/TR/2005/REC-charmod-20050215/
http://www.w3.org/TR/2005/WD-charmod-norm-20051027/
http://www.w3.org/TR/2005/WD-charmod-norm-20051027/
http://relaxng.org/compact-20021121.html
http://relaxng.org/compact-20021121.html
http://dret.net/netdret/docs/da-ws2002-stillhard.pdf
http://dret.net/netdret/docs/da-ws2002-stillhard.pdf
http://relaxng.sourceforge.net/datatype/java/apiDocs/
http://relaxng.sourceforge.net/datatype/java/apiDocs/

[Derivative]
An algorithm for RELAX NG validation. James Clark. 2002.
http://www.thaiopensource.com/relaxng/derivative.html
(referenced: 2007-02-27)

[DocBook]
The DocBook Schema, working draft. Norman Walsh, editor. OASIS, 2006.
http://docbook.org/specs/docbook-5.0b8-spec-wd-01.html

[DTDCompat]
RELAX NG DTD Compatibility. James Clark and Makoto Murata, editors.
OASIS, 2001.
http://relaxng.org/compatibility-20011203.html

[EarlyHistory]
The Early History of HTML. Sean B. Palmer.
http://infomesh.net/html/history/early/ (referenced: 2006-10-05)

[Frames]
Why Frames Suck (Most of the Time). Jakob Nielsen. 1996.
http://www.useit.com/alertbox/9612.html (referenced: 2006-10-09)

[Freddy]
Can Blind Freddy see a pattern here?. Rick Jelliffe. 2005.
http://lists.xml.org/archives/xml-dev/200507/msg00057.html

[Handbook]
The SGML Handbook. Charles F. Goldfarb. Oxford University Press, 1991.
ISBN: 0-19-853737-9.

[Harmful]
Sending XHTML as text/html Considered Harmful. Ian Hickson.
http://www.hixie.ch/advocacy/xhtml (referenced: 2006-10-14)

[HTML30]
HyperText Markup Language Specification Version 3.0, working draft. Dave
Raggett, editor. IETF, 1995.
http://www.w3.org/MarkUp/html3/html3.txt

[HTML32]
HTML 3.2 Reference Specification. Dave Raggett. W3C, 1997.
http://www.w3.org/TR/REC-html32

[HTML40]
HTML 4.0 Specification. Dave Raggett, Arnaud Le Hors and Ian Jacobs,
editors. W3C, 1997.
http://www.w3.org/TR/REC-html40-971218/

78 AN HTML5 CONFORMANCE CHECKER (DRAFT)

http://www.thaiopensource.com/relaxng/derivative.html
http://www.thaiopensource.com/relaxng/derivative.html
http://docbook.org/specs/docbook-5.0b8-spec-wd-01.html
http://docbook.org/specs/docbook-5.0b8-spec-wd-01.html
http://relaxng.org/compatibility-20011203.html
http://relaxng.org/compatibility-20011203.html
http://infomesh.net/html/history/early/
http://infomesh.net/html/history/early/
http://www.useit.com/alertbox/9612.html
http://www.useit.com/alertbox/9612.html
http://lists.xml.org/archives/xml-dev/200507/msg00057.html
http://lists.xml.org/archives/xml-dev/200507/msg00057.html
http://www.hixie.ch/advocacy/xhtml
http://www.hixie.ch/advocacy/xhtml
http://www.w3.org/MarkUp/html3/html3.txt
http://www.w3.org/MarkUp/html3/html3.txt
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/REC-html40-971218/
http://www.w3.org/TR/REC-html40-971218/

[HTML401]
HTML 4.01 Specification. Dave Raggett, Arnaud Le Hors and Ian Jacobs,
editors. W3C, 1999.
http://www.w3.org/TR/1999/REC-html401-19991224/

[HTML40rev]
HTML 4.0 Specification. Dave Raggett, Arnaud Le Hors and Ian Jacobs,
editors. W3C, 1998.
http://www.w3.org/TR/1998/REC-html40-19980424/

[HTMLplus]
HTML+ (Hypertext markup format), working draft. Dave Raggett. 1993.
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_1.html

[IIIR-HTML]
Hypertext Markup Language (HTML), working draft. Tim Berners-Lee and
Daniel Connolly, editors. IETF, 1993.
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt

[IntroXML]
An Introduction to XML and Web Technologies. Anders Møller and Michael
I. Schwartzbach. Addison-Wesley, 2006. ISBN: 0321269667.
http://www.brics.dk/ixwt/

[ISO15445]
ISO/IEC 15445:2000(E), Information technology – Document description and
processing languages – HyperText Markup Language (HTML). ISO, 2000.
http://purl.org/NET/ISO+IEC.15445/15445.html

[ISO15445TC1]
ISO/IEC 15445:2000(E) TC1, Information technology – Document description
and processing languages – HyperText Markup Language (HTML), Technical
Corrigendum 1. ISO, 2002.
http://purl.org/NET/ISO+IEC.15445/TC1.html

[ISO19757-2]
ISO/IEC 19757-2:2003(E), Information technology – Document Schema Defin-
ition Language (DSDL) – Part 2: Regular-grammar-based validation – RELAX
NG. ISO, 2003.
http://standards.iso.org/ittf/PubliclyAvailableStandards/
c037605_ISO_IEC_19757-2_2003(E).zip

REFERENCES 79

http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_1.html
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_1.html
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
http://www.brics.dk/ixwt/
http://www.brics.dk/ixwt/
http://purl.org/NET/ISO+IEC.15445/15445.html
http://purl.org/NET/ISO+IEC.15445/15445.html
http://purl.org/NET/ISO+IEC.15445/15445.html
http://purl.org/NET/ISO+IEC.15445/TC1.html
http://purl.org/NET/ISO+IEC.15445/TC1.html
http://purl.org/NET/ISO+IEC.15445/TC1.html
http://purl.org/NET/ISO+IEC.15445/TC1.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/c037605_ISO_IEC_19757-2_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c037605_ISO_IEC_19757-2_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c037605_ISO_IEC_19757-2_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c037605_ISO_IEC_19757-2_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c037605_ISO_IEC_19757-2_2003(E).zip

[ISO19757-2Amd1]
ISO/IEC 19757-2:2003/Amd 1:2006(E), Information technology – Document
Schema Definition Language (DSDL) – Part 2: Regular-grammar-based valida-
tion – RELAX NG – Amendment 1: Compact Syntax. ISO, 2006.
http://standards.iso.org/ittf/PubliclyAvailableStandards/
c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip

[ISO19757-3]
ISO/IEC 19757-3:2006(E), Information technology – Document Schema Defin-
ition Language (DSDL) – Part 3: Rule-based validation – Schematron. ISO,
2006.
http://standards.iso.org/ittf/PubliclyAvailableStandards/
c040833_ISO_IEC_19757-3_2006(E).zip

[ISO8879]
ISO 8879:1986, Information processing – Text and office systems – Standard
Generalized Markup Language (SGML). ISO, 1986.

[JointPosition]
Position Paper for the W3C Workshop on Web Applications and Compound
Documents. The Mozilla Foundation and Opera Software, 2004.
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
(referenced: 2006-10-16)

[M12N]
Modularization of XHTML™. Murray Altheim, Frank Boumphrey, Sam
Dooley, Shane McCarron, Sebastian Schnitzenbaumer and Ted Wugofski,
editors. W3C, 2001.
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/

[M12N-RNG]
Modularization of XHTML in RELAX NG. James Clark. Thai Open Source
Software Center Ltd, 2003.
http://www.thaiopensource.com/relaxng/xhtml/

[M12N11]
XHTML™ Modularization 1.1. Murray Altheim, Frank Boumphrey, Sam
Dooley, Shane McCarron, Sebastian Schnitzenbaumer, Ted Wugofski,
Daniel Austin, Subramanian Peruvemba and Masayasu Ishikawa, edit-
ors. W3C, 2006.
http://www.w3.org/TR/2006/PR-xhtml-modularization-20060213/

[mod_validator]
mod_validator. Web Thing.
http://apache.webthing.com/mod_validator/ (referenced: 2007-01-30)

80 AN HTML5 CONFORMANCE CHECKER (DRAFT)

http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.thaiopensource.com/relaxng/xhtml/
http://www.thaiopensource.com/relaxng/xhtml/
http://www.w3.org/TR/2006/PR-xhtml-modularization-20060213/
http://www.w3.org/TR/2006/PR-xhtml-modularization-20060213/
http://apache.webthing.com/mod_validator/
http://apache.webthing.com/mod_validator/

[MozFAQ]
Mozilla Web Author FAQ. Henri Sivonen. 2005.
http://www.mozilla.org/docs/web-developer/faq.html
(referenced: 2006-10-18)

[MS-WebApps]
Paper for participation in the W3C Workshop on Web Applications and Com-
pound Documents. Alex Hopmann and Michael Wallent. Microsoft, 2004.
http://www.w3.org/2004/04/webapps-cdf-ws/papers/microsoft.html
(referenced: 2006-10-16)

[ProducingXML]
HOWTO Avoid Being Called a Bozo When Producing XML. Henri Sivonen.
2005.
http://hsivonen.iki.fi/producing-xml/ (referenced: 2007-02-22)

[Raggett]
Raggett on HTML 4. Dave Raggett, Jenny Lam, Ian Alexander and Mi-
chael Kmiec. Addison Wesley Longman, 1998. ISBN: 0-201-17805-2.
http://www.w3.org/People/Raggett/book4/ch02.html

[Relaxed]
Relaxed: on the way towards true validation of compound documents. Jirka
Kosek and Petr Nálevka. In WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 427–436. ACM Press, 2006.
ISBN: 1-59593-323-9.
http://doi.acm.org/10.1145/1135777.1135841

[Relaxtron]
Combining RELAX NG and Schematron. Eddie Robertsson. O’Reilly Media,
Inc., 2004.
http://www.xml.com/pub/a/2004/02/11/relaxtron.html

[RFC1738]
RFC 1738, Uniform Resource Locators (URL). Tim Berners-Lee, Larry Mas-
inter and Mark McCahill, editors. IETF, 1994.
http://ietf.org/rfc/rfc1738

[RFC1866]
RFC 1866, Hypertext Markup Language - 2.0. Tim Berners-Lee and Dan
Connolly, editors. IETF, 1995.
http://ietf.org/rfc/rfc1866

[RFC1942]
RFC 1942, HTML Tables. Dave Raggett. IETF, 1996.
http://ietf.org/rfc/rfc1942

REFERENCES 81

http://www.mozilla.org/docs/web-developer/faq.html
http://www.mozilla.org/docs/web-developer/faq.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/microsoft.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/microsoft.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/microsoft.html
http://hsivonen.iki.fi/producing-xml/
http://hsivonen.iki.fi/producing-xml/
http://www.w3.org/People/Raggett/book4/ch02.html
http://www.w3.org/People/Raggett/book4/ch02.html
http://doi.acm.org/10.1145/1135777.1135841
http://doi.acm.org/10.1145/1135777.1135841
http://www.xml.com/pub/a/2004/02/11/relaxtron.html
http://www.xml.com/pub/a/2004/02/11/relaxtron.html
http://ietf.org/rfc/rfc1738
http://ietf.org/rfc/rfc1738
http://ietf.org/rfc/rfc1866
http://ietf.org/rfc/rfc1866
http://ietf.org/rfc/rfc1942
http://ietf.org/rfc/rfc1942

[RFC2070]
RFC 2070, Internationalization of the Hypertext Markup Language. François
Yergeau, Gavin Thomas Nicol, Glenn Adams and Martin J. Duerst. IETF,
1997.
http://ietf.org/rfc/rfc2070

[RFC2368]
RFC 2368, The mailto URL scheme. Paul E. Hoffman, Larry Masinter and
Jamie Zawinski. IETF, 1998.
http://ietf.org/rfc/rfc2368

[RFC2397]
RFC 2397, The “data” URL scheme. Larry Masinter. IETF, 1998.
http://ietf.org/rfc/rfc2397

[RFC2616]
RFC 2616, Hypertext Transfer Protocol – HTTP/1.1. Roy T. Fielding, James
Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Masinter, Paul J.
Leach and Tim Berners-Lee. IETF, 1999.
http://ietf.org/rfc/rfc2616

[RFC2818]
RFC 2818, HTTP Over TLS. Eric Rescorla. IETF, 2000.
http://ietf.org/rfc/rfc2818

[RFC3066]
RFC 3066, Tags for the Identification of Languages. Harald Tveit Alvestrand.
IETF, 2001.
http://ietf.org/rfc/rfc3066

[RFC3106]
RFC 3106, ECML v1.1: Field Specifications for E-Commerce. Donald E.
Eastlake and Ted Goldstein. IETF, 2001.
http://www.ietf.org/rfc/rfc3106

[RFC4287]
RFC 4287, The Atom Syndication Format. Mark Nottingham and Robert
Sayre, editors. IETF, 2005.
http://ietf.org/rfc/rfc4287

[RFC4646]
RFC 4646, Tags for Identifying Languages. Addison Phillips and Mark Dav-
is, editors. IETF, 2006.
http://ietf.org/rfc/rfc4646

82 AN HTML5 CONFORMANCE CHECKER (DRAFT)

http://ietf.org/rfc/rfc2070
http://ietf.org/rfc/rfc2070
http://ietf.org/rfc/rfc2368
http://ietf.org/rfc/rfc2368
http://ietf.org/rfc/rfc2397
http://ietf.org/rfc/rfc2397
http://ietf.org/rfc/rfc2616
http://ietf.org/rfc/rfc2616
http://ietf.org/rfc/rfc2818
http://ietf.org/rfc/rfc2818
http://ietf.org/rfc/rfc3066
http://ietf.org/rfc/rfc3066
http://www.ietf.org/rfc/rfc3106
http://www.ietf.org/rfc/rfc3106
http://ietf.org/rfc/rfc4287
http://ietf.org/rfc/rfc4287
http://ietf.org/rfc/rfc4646
http://ietf.org/rfc/rfc4646

[RFC4647]
RFC 4647, Matching of Language Tags. Addison Phillips and Mark Davis,
editors. IETF, 2006.
http://ietf.org/rfc/rfc4647

[RNG-XSD]
Guidelines for using W3C XML Schema Datatypes with RELAX NG. James
Clark and Kohsuke Kawaguchi, editors. OASIS, 2001.
http://relaxng.org/xsd-20010907.html

[RNGdesign]
The Design of RELAX NG. James Clark.
http://www.thaiopensource.com/relaxng/design.html

[Ruby]
Ruby Annotation. Marcin Sawicki, Michel Suignard, Masayasu Ishikawa,
Martin Dürst and Tex Texin, editors. W3C, 2001.
http://www.w3.org/TR/2001/REC-ruby-20010531/

[SaxCompiler]
SaxCompiler. Henri Sivonen. 2005.
http://hsivonen.iki.fi/saxcompiler/ (referenced: 2007-02-22)

[Schematron15]
The Schematron Assertion Language 1.5. Rick Jelliffe. Academia Sinica Com-
puting Centre, 2002.
http://xml.ascc.net/resource/schematron/Schematron2000.html

[SchematronOld]
The Schematron – An XML Structure Validation Language using Patterns in
Trees. Rick Jelliffe. Academia Sinica Computing Centre, 2001.
http://xml.ascc.net/resource/schematron/old-index.html
(referenced: 2006-09-25)

[SchemaUE]
W3C Workshop on XML Schema 1.0 User Experiences and Interoperability.
W3C, 2005.
http://www.w3.org/2005/03/xml-schema-user-program.html

[Several]
Re: [whatwg] several messages about HTML5. Ian Hickson. 2007.
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/
2007-February/009517.html (referenced: 2007-02-27)

REFERENCES 83

http://ietf.org/rfc/rfc4647
http://ietf.org/rfc/rfc4647
http://relaxng.org/xsd-20010907.html
http://relaxng.org/xsd-20010907.html
http://www.thaiopensource.com/relaxng/design.html
http://www.thaiopensource.com/relaxng/design.html
http://www.w3.org/TR/2001/REC-ruby-20010531/
http://www.w3.org/TR/2001/REC-ruby-20010531/
http://hsivonen.iki.fi/saxcompiler/
http://hsivonen.iki.fi/saxcompiler/
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://xml.ascc.net/resource/schematron/old-index.html
http://xml.ascc.net/resource/schematron/old-index.html
http://xml.ascc.net/resource/schematron/old-index.html
http://www.w3.org/2005/03/xml-schema-user-program.html
http://www.w3.org/2005/03/xml-schema-user-program.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2007-February/009517.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2007-February/009517.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2007-February/009517.html

[Stats]
Web Authoring Statistics. Google, 2005.
http://code.google.com/webstats/index.html (referenced: 2007-02-26)

[Taxonomy]
Taxonomy of XML schema languages using formal language theory. Makoto
Murata, Dongwon Lee, Murali Mani and Kohsuke Kawaguchi. In ACM
Trans. Inter. Tech., volume 5, number 4, pages 660–704. ACM Press, 2005.
ISSN: 1533-5399.
http://doi.acm.org/10.1145/1111627.1111631

[ToBeDeleted]
<draft-ietf-iiir-html-01.txt, .ps> to be deleted.. W. Eliot Kimber. 1994.
http://1997.webhistory.org/www.lists/www-talk.1994q1/0573.html

[Understanding]
Understanding HTML, XML and XHTML. Maciej Stachowiak. 2006.
http://webkit.org/blog/?p=68 (referenced: 2006-10-14)

[ValetMode]
Parse Modes - Page Valet Help. Web Thing.
http://valet.webthing.com/page/parsemode.html
(referenced: 2007-01-30)

[Validace]
Doplňková validace HTML a XHTML dokumentů. Petr Nálevka. Bachelor’s
thesis, University of Economics, Prague, 2005.
http://relaxed.sourceforge.net/thesis_cz.html

[ValidationProbs]
An Experimental Study on Validation Problems with Existing HTML We-
bpages. Shan Chen, Dan Hong and Vincent Y. Shen. In Proc. 2005 Interna-
tional Conference on Internet Computing (ICOMP’05), pages 373–379. , 2005.
http://www.cs.ust.hk/faculty/shen/100.pdf

[ValidatorAbout]
About the Validation Service. Henri Sivonen. 2007.
http://hsivonen.iki.fi/validator-about/ (referenced: 2007-02-27)

[WaterlooGML]
Waterloo SCRIPT GML User’s Guide. University of Waterloo, 1988.
http://www.uga.edu/~ucns/stddocs/script-gmlref-tso.txt

84 AN HTML5 CONFORMANCE CHECKER (DRAFT)

http://code.google.com/webstats/index.html
http://code.google.com/webstats/index.html
http://doi.acm.org/10.1145/1111627.1111631
http://doi.acm.org/10.1145/1111627.1111631
http://1997.webhistory.org/www.lists/www-talk.1994q1/0573.html
http://1997.webhistory.org/www.lists/www-talk.1994q1/0573.html
http://webkit.org/blog/?p=68
http://webkit.org/blog/?p=68
http://valet.webthing.com/page/parsemode.html
http://valet.webthing.com/page/parsemode.html
http://relaxed.sourceforge.net/thesis_cz.html
http://relaxed.sourceforge.net/thesis_cz.html
http://www.cs.ust.hk/faculty/shen/100.pdf
http://www.cs.ust.hk/faculty/shen/100.pdf
http://www.cs.ust.hk/faculty/shen/100.pdf
http://hsivonen.iki.fi/validator-about/
http://hsivonen.iki.fi/validator-about/
http://www.uga.edu/~ucns/stddocs/script-gmlref-tso.txt
http://www.uga.edu/~ucns/stddocs/script-gmlref-tso.txt

[WCAG]
Web Content Accessibility Guidelines 1.0. Wendy Chisholm, Gregg Vander-
heiden and Ian Jacobs, editors. W3C, 1999.
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/

[WDG]
WDG HTML Validator. Liam Quinn.
http://www.htmlhelp.com/tools/validator/ (referenced: 2007-01-25)

[WDG1998]
What Makes the WDG HTML Validator Special. Liam Quinn. 1998.
http://web.archive.org/web/19990128203022/htmlhelp.com/tools/
validator/differences.html

[WDG2007]
How the WDG HTML Validator differs from others. Liam Quinn.
http://www.htmlhelp.com/tools/validator/differences.html.en
(referenced: 2007-01-25)

[WebApps]
Web Applications 1.0, working draft. Ian Hickson, editor. WHATWG,
2006.
http://whatwg.org/specs/web-apps/current-work/
(referenced: 2006-10-19)

[WebForms2]
Web Forms 2.0, working draft. Ian Hickson, editor. WHATWG, 2006.
http://whatwg.org/specs/web-forms/current-work/
(referenced: 2006-10-19)

[WHAT-Ann]
WHAT open mailing list announcement. Ian Hickson. WHATWG, 2004.
http://whatwg.org/news/start (referenced: 2006-10-18)

[WHAT-Charter]
Web Hypertext Application Technology Working Group Charter. WHATWG.
http://whatwg.org/charter (referenced: 2006-10-19)

[Whattf]
RELAX NG Schema for (X)HTML 5. Elika Etemad and Henri Sivonen.
2007.
http://syntax.whattf.org/ (referenced: 2007-02-27)

REFERENCES 85

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www.htmlhelp.com/tools/validator/
http://www.htmlhelp.com/tools/validator/
http://web.archive.org/web/19990128203022/htmlhelp.com/tools/validator/differences.html
http://web.archive.org/web/19990128203022/htmlhelp.com/tools/validator/differences.html
http://web.archive.org/web/19990128203022/htmlhelp.com/tools/validator/differences.html
http://www.htmlhelp.com/tools/validator/differences.html.en
http://www.htmlhelp.com/tools/validator/differences.html.en
http://whatwg.org/specs/web-apps/current-work/
http://whatwg.org/specs/web-apps/current-work/
http://whatwg.org/specs/web-forms/current-work/
http://whatwg.org/specs/web-forms/current-work/
http://whatwg.org/news/start
http://whatwg.org/news/start
http://whatwg.org/charter
http://whatwg.org/charter
http://syntax.whattf.org/
http://syntax.whattf.org/

[Wilson]
Jon Udell: Chris Wilson on IE7, Ajax, and web standards. Jon Udell and Chris
Wilson. Microsoft, 2007.
http://channel9.msdn.com/podcasts/
MSConversations_wilson_ch9.mp3 (referenced: 2007-02-26)

[XHTML-MP]
XHTML Mobile Profile. WAP Forum, 2001.
http://www.openmobilealliance.org/tech/affiliates/wap/
wap-277-xhtmlmp-20011029-a.pdf

[XHTML10]
XHTML™ 1.0: The Extensible HyperText Markup Language. Steven Pember-
ton et al. W3C, 2000.
http://www.w3.org/TR/2000/REC-xhtml1-20000126/

[XHTML10XSD]
XHTML™ 1.0 in XML Schema. Masayasu Ishikawa, editor. W3C, 2002.
http://www.w3.org/TR/2002/NOTE-xhtml1-schema-20020902/

[XHTML11]
XHTML™ 1.1 – Module-based XHTML. Murray Altheim and Shane
McCarron, editors. W3C, 2001.
http://www.w3.org/TR/2001/REC-xhtml11-20010531/

[XHTMLBasic]
XHTML™ Basic. Mark Baker, Masayasu Ishikawa, Shinichi Matsui, Peter
Stark, Ted Wugofski and Toshihiko Yamakami, editors. W3C, 2000.
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219/

[XML]
Extensible Markup Language (XML) 1.0. Tim Bray, Jean Paoli and C. M.
Sperberg-McQueen, editors. W3C, 1998.
http://www.w3.org/TR/1998/REC-xml-19980210

[xmlid]
xml:id Version 1.0. Jonathan Marsh, Daniel Veillard and Norman Walsh,
editors. W3C, 2005.
http://www.w3.org/TR/2005/REC-xml-id-20050909/

[XPath]
XML Path Language (XPath). James Clark and Steve DeRose, editors.
W3C, 1999.
http://www.w3.org/TR/xpath

86 AN HTML5 CONFORMANCE CHECKER (DRAFT)

http://channel9.msdn.com/podcasts/MSConversations_wilson_ch9.mp3
http://channel9.msdn.com/podcasts/MSConversations_wilson_ch9.mp3
http://channel9.msdn.com/podcasts/MSConversations_wilson_ch9.mp3
http://www.openmobilealliance.org/tech/affiliates/wap/wap-277-xhtmlmp-20011029-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-277-xhtmlmp-20011029-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-277-xhtmlmp-20011029-a.pdf
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2002/NOTE-xhtml1-schema-20020902/
http://www.w3.org/TR/2002/NOTE-xhtml1-schema-20020902/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219/
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2005/REC-xml-id-20050909/
http://www.w3.org/TR/2005/REC-xml-id-20050909/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

[XSDDatatypes]
XML Schema Part 2: Datatypes Second Edition. Paul V. Biron and Ashok
Malhotra, editors. W3C, 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[XSDDatatypes11WD]
XML Schema 1.1 Part 2: Datatypes, working draft. David Peterson, Paul V.
Biron, Ashok Malhotra and C. M. Sperberg-McQueen, editors. W3C,
2006.
http://www.w3.org/TR/2006/WD-xmlschema11-2-20060217/

[XSDDatatypesFE]
XML Schema Part 2: Datatypes. Paul V. Biron and Ashok Malhotra, edit-
ors. W3C, 2001.
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

REFERENCES 87

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2006/WD-xmlschema11-2-20060217/
http://www.w3.org/TR/2006/WD-xmlschema11-2-20060217/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

	Acknowledgements
	Contents
	Introduction
	Motivation
	Methods
	Objectives
	The Organization of this Thesis

	The History of HTML Leading to HTML5
	Early HTML
	Initial HTML at CERN
	The IIIR Draft
	HTML+
	HTML 2.0
	HTML 3.0
	HTML 3.2

	Contemporary HTML
	HTML 4
	ISO HTML
	XHTML 1.0
	Modularization
	XHTML Basic
	XHTML 1.1
	XHTML Mobile Profile

	HTML5
	The Mozilla/Opera Joint Position Paper
	The WHAT WG is Formed
	The WHATWG Specifications
	Web Forms 2.0
	Web Applications 1.0

	Schema Languages
	DTDs
	W3C XML Schema
	Document Structure Description
	TREX, RELAX, XDuce and DDML
	RELAX NG
	Datatyping
	Compact Syntax
	Use in This Project

	Schematron
	Using RELAX NG and Schematron Together
	Use in This Project

	Prior Work on Markup Checking
	The W3C Markup Validation Service
	WDG HTML Validator
	Page Valet
	The Schneegans XML Schema Validator
	Relaxed
	Feed Validator
	Validome

	Implementation
	The Basic Back End
	The Jing Validation Engine
	The RELAX NG Schema
	The General Schema Design
	Common Definitions
	Common Content Models
	Common Attributes
	Common Datatypes
	Parameter Switches

	Examples of Elements

	The HTML5 Datatype Library
	Dates
	IRIs
	Language Tags
	ECMAScript Regular Expressions

	The Schematron Schema
	Exclusions
	Required Ancestors
	Referential Integrity

	The Non-Schema-Based Checkers
	Table Integrity Checker
	Checking the Text Content of Specific Elements
	Checking for Significant Inline Content
	Unicode Normalization Checking
	Requirements
	Interpretation
	Implementation

	The HTML Parser
	Character Model Checking
	The Front End

	Shortcomings
	Non-Ideal Error Messages
	Bimorphic Content Models
	Lack of Datatype Diagnostics

	Poor Localizability
	Opportunities for Optimization
	RELAX NG
	Schematron

	Applicability in Other Contexts
	RELAX NG-Guided Autocompletion in Editors
	Content Management Systems

	Future Work
	Open Up
	The HTML5 Parsing Algorithm
	Tracking the Specification
	RELAX NG Message Improvements
	More Non-Schema-Based Checkers
	Assistance for Checking Human-Checkable Requirements
	Web Service
	Embedded MathML and SVG
	Showing the Erroneous Source Markup

	Conclusions
	References

